
MLP and related topics

Akito Sakurai

1

Multilayer perceptron (MLP)

2

 A multilayer perceptron (MLP) is a network of nodes consisting of at
least three layers of nodes (an input, a hidden and an output layer).

input
layer

hidden
layer 1

hidden
layer 2

output
layer

• The number of hidden
layers and neurons in
each hidden layer are
hyperparameters to
be set.

Purpose of MLP learning

3

input
layer

hidden
layer 1

hidden
layer 2

output
layer

Output yInput x y = φ(x; π)

Non-linear function
with parameters π

• Given a training dataset
{(xi, ti)}, find π that
minimizes an error or a
loss, e.g., ∑ ሺݕ௜ െ ௜ሻଶ௜ݐ
where ݕ௜ ൌ ߮ሺݔ௜; ሻߨ

In fact, this is not correct.
If this one is “try to
minimize”, it is almost
correct.

How to minimize the error

• Many methods were proposed and tried.
• The simplest one among them is “steepest descent”

– Or steepest ascent if you intend to find the maximum.

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

0

5

10

EHwL

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

The direction of the “steepest
descent is the opposite of the
gradient of the objective
function which is normal to its
contour.
You will go along the steepest
descent direction iteratively.

4

Steepest descent
• An iterative method: you descent the objective

function value surface E(w)=loss(w) iteratively.
• Gradient is the steepest ascent direction
• Therefore the it repeats

where α is called a learning rate which should
be appropriately defined.

ܹ ← ܹ ൅ ΔܹΔܹ ൌ ߙ െ ܹ߲ܧ߲
5

where ܧ ݓ ൌ∑ ሺ߮ሺݔ௜; ሻݓ 	െ ௜ሻଶ௜ݐ

When you were undergraduate …
2)(ytE 

xyt)(2 

W
ytyt

W
E






)()(2

W
y

W
yt






)(

x
W

xw
n

i
ii















1





n

i
ii xwy

1

(t is a target, and is
independent of W

(x is a vector)

When the activation
function is the
identity function,
i.e.



1x

2x

nx

1w

2w

nw

10 x
0w

i

n

i
i xwnet 




0   








 


i

n

i
i xwneto

0


A bit more

xytW)( 

Therefore, if we rewrite 2α as α,

xyt
W
E)(2 
















W
EWW  and

WWW  where





n

i
ii xwy

1

7

where is assumed

Comparison with Perceptron
learning algorithm

• If you look at the resulted rule, it looks like the perceptron learning
rule:

which obtained by setting α=1, in the steepest descent:

• In other word, it looks like proving the validity of perceptron learning
algorithm

• But not, because the threshold function is not the identity function and
is not differentiable















yt
tytx
tytx

W
 if0

1 and if
1 and if

WWW  where

xytW)( WWW 

1,1  yt

8

where

For any activation function
2)(ytE 

 xyfyt in)(2

W
ytyt

W
E






)()(2

W
y

W
yt






)(

 
W

xw
yf

n

i
ii

in 













1

 
W
yf in






  



n

i
iiinin xwyyfy

1
,

 
W
y

y
yf in

in

in









 xyf in
(x is a vector)

In short

 xyfytW in)(

Rewriting 2α as α,

 xyfyt
W
E

in

)(2












W
EWW  where

WWW 

10

where

By the way
• We have considered a learning rule when a sample is given.
• But this is not appropriate
• Because we have to consider the error or loss which is not just of a

sample but of a set of all the samples.
• Because if we decrease an error caused by a single sample x1 it may

increase an error caused by another sample x2 and may increase the total
sum of errors.

• Therefore we have to consider
2)(ytE but not 

s
ss ytE 2)(

(this will be called “batch mode” (vs. online mode))

  
s

ssinss xyfytW ,)(WWW  where

and

11

Is this correct?
• Yes, it is. If the learning rate α is decreasing to 0 with

appropriate speed, by iteratively applying the rule:

we can get at a (local) minimum of

• Then the batch mode is good enough?
• The story is not so simple.
• In reality, it is known empirically that the online mode

minimization will give us smaller E.
– Why?

• It is also known that mini-batch is better when there are
many samples

  
s

ssinss xyfytW ,)(WWW  where

 
s

ss ytE 2)(

12

Multi-layer (or MLP) case

• No problem. The steepest descent is applicable.
• Well, in fact there is a problem.
• In case of MLP, the function to be minimized is

very complicated. It is a compound function of
many functions, although each component
function is simple.

• There is a solution which was already found in
1980’s and named error backpropagation
algorithm.

13

A single hidden layer case

Input layer

xi

x1

x2

xn

1

2

i

n

Output layer

1

2

k

p

yk

y1

y2

yp

Forward signals

Backward error-like signals

wjk

Hidden layer

wij

1

2

j

m

Error back-propagation or BP
14

.co
nn

ec
tin

g
w

ei
gh

ts

co
nn

ec
tin

g
w

ei
gh

ts

. . .

15

ix
i
jw









i
jiwx  iji

j

wxf

x
f



previous
layer

this layer

Calculation of outputs
(forward prop.)

  j
i
ji xwxf 

ix
i
jw











i
jiwx  iji

j

wxf

x
f

16



previous
layer’s

previous layer’s this layer’s

this layer’s

Einstein summation convention
is used for clarity

previous layer to this layer
jj xx 

In input layer

j –th node

Calculation of gradients
(backward prop.)

    ji
j

k
ik

i ywwxfy  at

jy
i
jw













ji
j yw

 

k
ikwx

f
at


 following layer’s

this layer’s following layer’s

this layer’s

this layer to following layer

this layer’s

kx
k
iw











k
ikwx  kik

i

wxf

x
f

Forward

jx
j

j

x
Ey






In output layer

jii
j

yx
w
E





i –th node

i –th node

iy

Summary 1: Supervised learn.
 How to obtain parameter values:

 Suppose is a training dataset,
 network i/o relation is , and
 an error function e.g.,

 Find out W that minimizes this.

  



N

t
tt yxWF

N
WE

1

2)),((1

  Ntyx tt 1, |
),(xWFy 

18

In fact, this is not correct. If this one is “try to
minimize”, it is almost correct.

Summary 2: method
 It is sufficient to solve a system of equations

obtained by differentiating E and equating
them to be 0. Is that correct?
 E should be differentiable.
 For the perceptron, E is not.

 The system is non-linear and complicated.
There is no closed form solution.

 A practical solution is an iterative method that
will find a series for which
       321 WEWEWE

321 ,, WWW

19

Summary 3: iterative method
 Many methods have been proposed.
 The simplest one among them is “steepest

descent”

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

0

5

10

EHwL

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

The steepest descent
direction is normal to
contour lines (planes).

20

Summary 4: calculation

 How is the steepest descent calculated?
 The gradient is the steepest ascent.
 Therefore

is the method where η is a learning rate
which should be determined carefully.

j
i

j
i

newj
i

j
i

j
i

www

W
w
Ew








,

)(

21

Behavior of progress

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

-2 -1 0 1 2
-2

-1

0

1

2

22

when the learning rate
is small

when the learning rate
is relatively large

when the learning rate
is large

An example of E surface

-5
0

5
10

15

-5

0

5

10

15

0

5

10

-5 0 5 10 15
-5

0

5

10

15

w1
1,1w2

1,1

w1
1,1

w2
1,1

23

Another example

w1
1,1

b1
1

-10

0

10

20

30 -30
-20

-10
0

10
20

0

0.5

1

1.5

2

2.5

b1
1w1

1,1-10 0 10 20 30
-25

-15

-5

5

15

24

Another example

-10
-5

0
5

10

-10

-5

0

5

10

0

0.7

1.4

-10 -5 0 5 10
-10

-5

0

5

10

b1
1

b2
1

b2
1b1

1

25

An example of convergence

-5 0 5 10 15
-5

0

5

10

15

w1
1,1

w2
1,1

26

An example of divergence

-5 0 5 10 15
-5

0

5

10

15

w1
1,1

w2
1,1

27

Is BP satisfactory?
 Of course not!
 There are many good optimization method better than steepest

descent are known.
 In fact many methods were applied to NN.
 It worked relatively nicely but not remarkably well

 One of the problems is computation time
 Fast methods require matrix inversion of the size |W||W| (|W| is the

number of weights)
 Methods that successively approximate the inversion of a matrix are

often used.
 But high rate of success and avoidance of local optima that

compensate the high cost computation is not expected.
 Neural Networks seem to be simple in a sense but in fact are very

peculiar. There are many singular points in its search space.
 Levenberg-Marquardt might be a good method.

Timothy Masters, Advanced Algorithms for Neural Networks: A
C++ Sourcebook, John Wiley & Sons (1995).

Levenberg-Marquardt

-5 0 5 10 15
-5

0

5

10

15

w1
1,1

w2
1,1

29

Stochastic Gradient Descent
 On-line version of BP

 One or more (but far fewer than all) samples are
used for calculation of updates at one time.
 The latter is called mini-batch in deep learning.

 Samples to be used are selected randomly.
 Usually all the samples are ordered randomly and are

sampled in order from the first. When all the samples are
used, they are re-ordered randomly.

 In NN case, sometimes the convergence becomes
very slow
 Could you guess why?

30
௪ ௪

SGD for NN
 In processes of error-decreasing, there often exist of

periods of very slow convergence.
 It is called plateau
 Why?

 There exists degeneracy in search space of weights
where singular points of error function exist
 Many occurrences of the same shape in the error function

causes the singular points.
 Current weight set passes close to the points.

 Many speeding up methods have been proposed.
31

Going through plateau

32

http://librimind.com/2016/03/optimizations-of-gradient-descent/

In reality, it is a long valley of gentle slope.

Utilization of momentum
 Basic idea:

 On a plateau, steps are short but direction is similar.
 To accelerate the process, adding previous steps

seems to be promising.
 It might be better to forget very old steps

 Exponential discount of old steps is a good idea.

33

௪ ௪

Examples of acceleration
 AdaGrad

 AdaDelta

 Adam

34

Ԧݎ ← Ԧݎ ൅ ݃௪ଶݓ ← ݓ െ Ԧݎߙ ൅ ߝ ݃௪ݎԦ ← Ԧݎߚ ൅ 1 െ ߚ ݃௪ଶݒԦ ← Ԧݏ ൅ Ԧݎߝ ൅ ߝ ݃௪ݏԦ ← Ԧݏߚ ൅ 1 െ ߚ ݓԦଶݒ ← ݓ െ ԦݒԦݒ ← Ԧݒߚ ൅ 1 െ ߚ ݃௪ݎԦ ← Ԧݎߛ ൅ 1 െ ߛ ݃௪ଶݓ ← ݓ െ Ԧ1ݎߙ െ ௧ߛ ൅ ߝ Ԧ1ݒ െ ௧ߚ ݃௪

35
http://cs231n.github.io/neural-networks-3/

36
http://cs231n.github.io/neural-networks-3/

NAG: Nesterov
Accelerated Gradient
Descent

37

http://cpmarkchang.logdown.com/posts/467674-optimization-method-adadelta

Overtraining in iterative methods
 Over-trained: when a model fits well to the training dataset but predicts badly on

unseen samples.
 A model behaves better on Dtrain, but worse on Dtest

 For iterative methods:
 (when properly initialized) they start under-trained (because under-trained models are

omnipresent)
 When learning process proceeds, the model fits better to the training dataset. Generally

speaking, the models learn general regularity that exist in any choice of training datasets, i.e.,
the models are not over-trained.

 When learning process goes further, the models start learning of specific regularity found in
the training dataset that the models face, i.e., the models become over-trained.

38

NN case
 Over-training process can be found

by tracing prediction error on a
validation dataset.

 But it is very difficult to declare a
start of over-training.

Error versus epochs (Example 1)

Error versus epochs (Example 2)

Tom Michel “Machine Learning”

Headaches in an NN case

Regularization
 To ease the damage of over-training, a kind of

penalty function is added to the term to be minimized.
The penalty function penalizes conducts of deviating
far away from the starting point.

      
  ji

ij
Dd outputsk

dkdk wotwE
,

2
,

2
,, 

     
   



























Dd outputsk inputsj

j
d

dk
j
d

dk
dkdk x

o
x
t

otwE
2

,,2
,, 

41

L1 relatively encourages
sparsity

L2 relatively discourages
large weights

Dropout

42
Srivastava et al. 2014. “Dropout: a simple way to prevent
neural networks from overfitting”

Not permanent but
just randomly

