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Multilayer perceptron (MLP)
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 A multilayer perceptron (MLP) is a network of nodes consisting of at 
least three layers of nodes (an input, a hidden and an output layer). 
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• The number of hidden 
layers and neurons in 
each hidden layer are 
hyperparameters to 
be set.

Purpose of MLP learning
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Output yInput x y = φ(x; π)

Non-linear function
with parameters π

• Given a training dataset 
{(xi, ti)}, find π that 
minimizes an error or a 
loss, e.g., ∑ ሺݕ௜ െ ௜ሻଶ௜ݐ
where ݕ௜ ൌ ߮ሺݔ௜; ሻߨ

In fact, this is not correct. 
If this one is “try to 
minimize”, it is almost 
correct.

How to minimize the error

• Many methods were proposed and tried.
• The simplest one among them is “steepest descent”

– Or steepest ascent if you intend to find the maximum.
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The direction of the “steepest 
descent is the opposite of the 
gradient of the objective 
function which is normal to its 
contour.
You will go along the steepest 
descent direction iteratively.
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Steepest descent
• An iterative method: you descent the objective

function value surface E(w)=loss(w) iteratively.
• Gradient is the steepest ascent direction
• Therefore the it repeats

where α is called a learning rate which should 
be appropriately defined.

ܹ ← ܹ ൅ ΔܹΔܹ ൌ ߙ െ ܹ߲ܧ߲
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where ܧ ݓ ൌ∑ ሺ߮ሺݔ௜; ሻݓ 	െ ௜ሻଶ௜ݐ

When you were undergraduate …
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(t is a target,  and is 
independent of W

(x is a vector)

When the activation 
function is the 
identity function,
i.e.
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A bit more
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where is assumed

Comparison with Perceptron 
learning algorithm

• If you look at the resulted rule, it looks like the perceptron learning 
rule:

which obtained by setting α=1,     in the steepest descent:

• In other word, it looks like proving the validity of perceptron learning 
algorithm

• But not,  because the threshold function is not the identity function and 
is not differentiable
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where

For any activation function
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where

By the way
• We have considered a learning rule when a sample is given.
• But this is not appropriate
• Because we have to consider the error or loss which is not just of a 

sample but of a set of all the samples.
• Because if we decrease an error caused by a single sample x1 it may 

increase an error caused by another sample x2 and may increase the total 
sum of errors.

• Therefore we have to consider
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Is this correct?
• Yes, it is. If the learning rate α is decreasing to 0 with 

appropriate speed, by iteratively applying the rule: 

we can get at a (local) minimum of

• Then the batch mode is good enough?
• The story is not so simple.
• In reality, it is known empirically that the online mode 

minimization will give us smaller E.
– Why?

• It is also known that mini-batch is better when there are 
many samples
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Multi-layer (or MLP) case

• No problem. The steepest descent is applicable.
• Well, in fact there is a problem.
• In case of MLP, the function to be minimized is 

very complicated. It is a compound function of 
many functions, although each component 
function is simple. 

• There is a solution which was already found in
1980’s and named error backpropagation 
algorithm.
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A single hidden layer case
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Error back-propagation or BP
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Summary 1: Supervised learn.
 How to obtain parameter values:

 Suppose is a training dataset,
 network i/o relation is                    , and
 an error function e.g.,

 Find out W that minimizes this.
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In fact, this is not correct. If this one is “try to 
minimize”, it is almost correct.



Summary 2: method
 It is sufficient to solve a system of equations 

obtained by differentiating E and equating 
them to be 0. Is that correct?
 E should be differentiable.
 For the perceptron, E is not.

 The system is non-linear and complicated. 
There is no closed form solution.

 A practical solution is an iterative method that
will find a series                  for which 
       321 WEWEWE

321 ,, WWW
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Summary 3: iterative method
 Many methods have been proposed.
 The simplest one among them is “steepest 

descent”
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The steepest descent 
direction is normal to 
contour lines (planes).
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Summary 4: calculation

 How is the steepest descent calculated?
 The gradient is the steepest ascent.
 Therefore

is the method where η is a learning rate 
which should be determined carefully.
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Behavior of progress
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when the learning rate 
is small

when the learning rate 
is relatively large

when the learning rate 
is large

An example of E surface
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Another example
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Another example
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An example of convergence
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An example of divergence
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Is BP satisfactory?
 Of course not!
 There are many good optimization method better than steepest 

descent are known.
 In fact many methods were applied to NN.
 It worked relatively nicely but not remarkably well

 One of the problems is computation time
 Fast methods require matrix inversion of the size |W||W|  (|W| is the 

number of weights)
 Methods that successively approximate the inversion of a matrix are 

often used.
 But high rate of success and avoidance of local optima that 

compensate the high cost computation is not expected.
 Neural Networks seem to be simple in a sense but in fact are very 

peculiar. There are many singular points in its search space. 
 Levenberg-Marquardt might be a good method.

Timothy Masters, Advanced Algorithms for Neural Networks: A 
C++ Sourcebook, John Wiley & Sons (1995).

Levenberg-Marquardt 
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Stochastic Gradient Descent
 On-line version of BP

 One or more (but far fewer than all) samples are 
used for calculation of updates at one time.
 The latter is called mini-batch in deep learning.

 Samples to be used are selected randomly.
 Usually all the samples are ordered randomly and are 

sampled in order from the first. When all the samples are 
used, they are re-ordered randomly.

 In NN case, sometimes the convergence becomes 
very slow
 Could you guess why?

30
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SGD for NN
 In processes of error-decreasing, there often exist of 

periods of very slow convergence.
 It is called plateau
 Why?

 There exists degeneracy in search space of weights 
where singular points of error function exist
 Many occurrences of the same shape in the error function 

causes the singular points.
 Current weight set passes close to the points.

 Many speeding up methods have been proposed.
31

Going through plateau
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http://librimind.com/2016/03/optimizations-of-gradient-descent/

In reality, it is a long valley of gentle slope.

Utilization of momentum
 Basic idea:

 On a plateau, steps are short but direction is similar.
 To accelerate the process, adding previous steps 

seems to be promising.
 It might be better to forget very old steps

 Exponential discount of old steps is a good idea.
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Examples of acceleration 
 AdaGrad

 AdaDelta

 Adam
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Ԧݎ ← Ԧݎ ൅ ݃௪ଶݓ ← ݓ െ Ԧݎߙ ൅ ߝ ݃௪ݎԦ ← Ԧݎߚ ൅ 1 െ ߚ ݃௪ଶݒԦ ← Ԧݏ ൅ Ԧݎߝ ൅ ߝ ݃௪ݏԦ ← Ԧݏߚ ൅ 1 െ ߚ ݓԦଶݒ ← ݓ െ ԦݒԦݒ ← Ԧݒߚ ൅ 1 െ ߚ ݃௪ݎԦ ← Ԧݎߛ ൅ 1 െ ߛ ݃௪ଶݓ ← ݓ െ Ԧ1ݎߙ െ ௧ߛ ൅ ߝ Ԧ1ݒ െ ௧ߚ ݃௪
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http://cs231n.github.io/neural-networks-3/
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http://cs231n.github.io/neural-networks-3/

NAG: Nesterov
Accelerated Gradient 
Descent
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http://cpmarkchang.logdown.com/posts/467674-optimization-method-adadelta

Overtraining in iterative methods
 Over-trained:  when a model fits well to the training dataset but predicts badly on 

unseen samples.
 A model behaves better on Dtrain, but worse on Dtest

 For iterative methods:
 (when properly initialized) they start under-trained (because under-trained models are 

omnipresent)
 When learning process proceeds, the model fits better to the training dataset. Generally 

speaking, the models learn general regularity that exist in any choice of training datasets, i.e., 
the models are not over-trained.

 When learning process goes further, the models start learning of specific regularity found in 
the training dataset that the models face, i.e., the models become over-trained.
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NN case
 Over-training process can be found 

by tracing prediction error on a 
validation dataset.

 But it is very difficult to declare a
start of over-training.

Error versus epochs (Example 1)

Error versus epochs (Example 2)

Tom Michel “Machine Learning”

Headaches in an NN case

Regularization 
 To ease the damage of over-training, a kind of 

penalty function is added to the term to be minimized. 
The penalty function penalizes conducts of deviating 
far away from the starting point.
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L1 relatively encourages 
sparsity

L2 relatively discourages 
large weights

Dropout
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Srivastava et al. 2014. “Dropout: a simple way to prevent 
neural networks from overfitting”

Not permanent but 
just randomly


