
Neural networks
an introduction

Akito Sakurai

Contents

• Overview
– Neurons and models

• Implementation in early days
– Perceptrons

• An introduction to MLP

2

What are neurons?

3

• “There is no such thing as a typical neuron”,
Arbib, 1997

A typical(?) neuron

4

Dynamics of neuron activity

5 6
Paul M. Churchland (1996) The Engine of Reason, The Seat of the Soul

McCulloch and Pitts

8

• Warren S. McCulloch and Walter Pitts (1943) ``A logical
calculus of the ideas immanent in nervous activity'',
Bulletin of Mathematical Biophysics, 5: 115-133.

• A very simplified (mathematical, computational) model
• Any logical function can be realized by connecting the

model neurons.

A model neuron

9

 A model neuron receives an input vector, processes it,
and outputs a value.

 The model in early ages use the step function as an
activation function. Currently sigmoid or rectified
linear function are commonly used.

ݐݑ݌ݐݑ݋ ൌ ݊݋݅ݐܿ݊ݑ݂_݊݋݅ݐݒܽ݅ݐܿܽ ܹ · ݐݑ݌݊ܫ

Perceptron: its structure

• Rosenblatt, F. (1957). “The perceptron: A perceiving and recognizing
automaton (project PARA).”, Technical Report 85-460-1, Cornell
Aeronautical Laboratory.

• Rosenblatt, F. (1962). “Principles of Neurodynamics.”, Spartan
Books, New York.

10

Contents

• Overview
– Neurons and models

• Implementation in early days
– Perceptrons

• An introduction to MLP

11

Perceptron: a polysemic word
 Perceptron: used to mean varying concepts

 Linear threshold unit: the next slide
 Original perceptron: as follows
 Sigmoid unit or any other similar units
 Network of sigmoidal units: called multi-layer perceptron or MLP
 Network of linear threshold units: MLP but quite rarely used in this meaning

 In this class, we assume it means a sigmoidal network
 Original perceptron

 Rosenblatt 1962
 Minsky and Papert 1969

12

 Perceptron: a single neuron unit model
 Alias: Linear Threshold Unit (LTU) or Linear Threshold Gate (LTG)

 Net input: a value of a linear function applied to inputs

 Net output: a value of the threshold function applied to the net input (threshold  = w0)

 A function to obtain the net output by applying it to net input is called activation function

 Perceptron Networks
 A network of perceptrons connected through weighted links wi

 Multi-Layer Perceptron (MLP):





n

0i
ii xwnet

Perceptron

x1

x2

xn

w1

w2

wn



x0 = 1
w0




n

0i
ii xw

 














otherwise 1-

0 if 1 i

n

0i
i

n21

xw
xxxo ,, 

   


 


otherwise 1-

0 if 1
: Vector

xw
w ,xsgnxo




表記

13

repr.

Decision boundary of perceptron

 Perceptron: can easily represent many important functions.
 Logical functions (McCulloch and Pitts, 1943)

 e.g., with simple integer weights AND(x1, x2), OR(x1, x2), NOT(x)

 Some functions are not representable
 e.g., linearly non-separable functions (just a paraphrase)
 To circumvent: construct a network of perceptrons

Example A

+

-
+

+

-
-

x1

x2

+

+

Example B

-

-
x1

x2

14

Perceptron learning algorithm

 Perceptron Learning Rule (Rosenblatt, 1959)
 Idea: suppose that for each input vector, an output value is given. Then by updating

weights, the perceptron will become able to output the proper values.
 The unit assumes binary value; for a perceptron unit, the weight update formula is


where t = c(x) is a target value for x, o is a current perceptron output value. The
second formula is sometimes expressed as Δݓ௜ ൌ ݐሺݎ െ ௜ݔሻ݋ where r is called a
learning rate. Because in the case of perceptron, r could be any positive value, giving
equivalent results, r =1 is preferred in the formula.

 When the training set D is linearly separable , the algorithm converges in finite time.
Some literature requires r to be small enough, but it is wrong for the perceptron.

௜ݓ ← ௜ݓ ൅ Δݓ௜Δݓ௜ ൌ ሺݐ െ ௜ݔሻ݋

15

In a different way

Initialization: is any vector.
Repeat

Select all in sequence in arbitrary order
If and then continue;
If and then FixPlus and continue;
If and then continue;
If and then FixMinus and continue;

until no errors (neither FixPlus nor FixMinus is called)
FixPlus:
FixMinus:

w

Fx

  FFFx

Fx
Fx
Fx
Fx

0xw

0xw

0xw
0xw

xww :
xww :

Linearly separable?

Linearly Separable (LS)
Data Set

x1

x2

+
+

+

+
+

+
+

+

+

+
+

-

-
-

-
-

-

--

-

-

-

-
-

- - -

 Definition
 Suppose 0 or 1 is a label f(x) of x in D. if there exists w and ߠ s.t.
 f(x) = 1 if w1x1 + w2x2 + … + wnxn , 0 otherwise
 D is called linearly separable.ߠ is called a threshold.

 Linearly separable?
 Note: D being linearly separable does not mean its population is so.
 disjunction: c(x) = x1’ x2’ …  xm’

 m of n: c(x) = at least 3 of (x1’ , x2’, …, xm’)
 exclusive OR (XOR): c(x) = x1  x2

 DNF: c(x) = T1  T2  … Tm; Ti = l1  l1  …  lk

 Transformation of expression
 Can we transform a linearly non-separable problem to a linearly separable one?
 If it is possible, is it meaningful? Realistic?
 Is it an important problem?

○

○

×

×

17

Convergence of the perceptron algorithm

 Perceptron convergence theorem
 Claim: if there exists a weight vector w which is consistent with the training dataset (i.e., linearly

separable), the perceptron learning algorithm converges.
 Proof: Searching spaces are in order with a limit (width of wedge (searching space) decrease) −

Ref. Minsky and Papert, 11.2-11.3
 Note 1: how many repetitions are necessary until convergence?
 Note 2: what happens if it is not linearly separable?

 Perceptron cycling theorem
 Claim: If a training dataset is not linearly separable, weight vectors obtained during the perceptron

algorithm form a bounded set. If the weights are integers, the set is finite.
 Proof: If the initial weight vector is long enough, its length is shown to be unable to become

longer; proven by a mathematical induction with the dimension n. − Minsky and Papert, 11.10

 How to make it robust? Or to make it more expressive?
 Goal 1: to develop an algorithm which finds a better approximation
 Goal 2: to develop a new architecture to go beyond the restrictions

18

Universal approximation theorem

• A neural network with a single hidden layer
can approximate any continuous function
within a required accuracy if any finite number
of hidden units are allowed to use

x

1
1y

1
2y

1
3y

1
4y

x

1

Any number of units are
allowed to use if necessary. 19

Perceptron’s ability

• Perceptrons can
– Recognize characters (alphabets)
– Recognize types of patterns (forms etc.)
– Learn with a splendid learning algorithm

• Perceptron learning algorithm, as was seen, is able
to find a solution of any problems that has solutions
by perceptrons.

• Note: Existence of solutions does not help us to find
a solution. 20

Unfortunately

A

B

When an output is not as is required, some weights must be updated,
which is easily inferred. But how much they are changed was not
known at the time.

learnable

how to learn
was unknown

In short
• There exist problems that cannot be solved,

although a solution exists in a form of networks.
– Parity or XOR problem
– Connectivity of patterns
– In general, linearly non-separable problems

• Marvin L. Minsky and Seymour Papert (1969),
“Perceptrons”, Cambridge, MA: MIT Press
– Proved that perceptron is not capable to solve many problems.

– We can construct a network! Yes, but “we” must do it.

• McCulloch & Pitts neuron network is equivalent to Turing
machine (i.e. “universal”). OK but does it help us?
– If we do not know how to make it learn, it is useless.

• Does a learning algorithm of the network exist? 22

Cognitron

Fig. 4 a-c. Three possible methods for interconnecting layers. The connectable area
of each cell is differently chosen in these three methods. Method c is adopted for
the cognitron discussed in this paper

K.Fukushima, Cognitron: A self-organizing multilayered neural network, Biological Cybernetics 1975

Sophisticated structure
Specific learning algorithm
Too advanced to be popular

Exception at the time

Neocognitron

24

Fig. 2. Schematic diagram illustrating
the interconnections between layers in
the neocognitron

K. Fukushima, Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position, Biological Cybernetics (1980)

Exception at the time

S-cell in Neocognitron

25
K. Fukushima, Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern
Recognition, NeuralNetworks, Vol. 1, pp. 119-130, 1988

Contents

• Overview
– Neurons and models

• Implementation in early days
– Perceptrons

• MLP appears

26

PDP appeared
• The book “Perceptrons” was said to have delayed

researches in the field by two decades (pros and cons exist)
• A turning point: D.E. Rumelhart, J.L. McClelland, eds.,

“Parallel Distributed Processing: Explorations in the
Microstructure of Cognition”, MIT Press, 1986.
– A compilation of articles: from mathematics to philosophy
– Many successful experiments on multi-layer networks
– Proposed “error back propagation algorithm”: unexpected influence on

learning algorithms.
– [Because similar techniques to BP were found before PDP (Amari

1967; Werbos, 1974, “dynamic feedback”; Parker, 1982, “learning
logic”), reinvention/rediscovery would be a better word to describe it.
But it has had a profound influence.]

27

Error Back Propagation
• Basically it is for multi-layer feed-forward networks but

could be applied to other types of networks.

• Weights are updated in proportion to backpropagated
errors

28

Two important
inventions

Reasons why PDP succeeded
• Changed the activation function of units

from the threshold function to the sigmoid
function

• Formulated the learning problem in the
error minimization problem. E.g.,

• Solved the (nonlinear multivariate)
problem by a naïve method (steepest
descent)

ሻݓሺܧ ൌ ෍ ݂ ݓ;௞ݔ െ target	value	for	ݔ௞ୟ୪୪	ୱୟ୫୮୪ୣୱ: ௫ೖ
ଶ

29

Error Minimization

• Do not pursue a complete solution (error=0)
– Our ability may be limited
– Samples may contain errors
– Samples may be of probabilistic events

• Consider (too naively) the sum of squares
of the difference between targets and
current outputs as the error.

• Find out weights that minimize the error

30
-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

Sigmoid function



1x

2x

nx

1w

2w

nw

10 x
0w

i

n

i
i xwnet 




0   








 


i

n

i
i xwneto

0


Quite often use  ：   xe
x 


1
1

A method of minimization
• Solve equations obtained by equating the

gradients to be 0

• Because f is non-linear, we cannot solve it.
• An iterative method is to be sought, i.e., a method

that gives us such that
       321 wEwEwE

321 ,, www

ሻݓሺܧ ൌ ෍ ݂ሺݔ௞;ݓሻ െ target	of	ݔ௞୤୭୰	ୟ୪୪	ୱୟ୮୪ୣୱ ௫ೖ
ଶ

0


w
E

32

Iterative method for minimization

• Many efficient methods have been proposed
• The simplest one is the steepest descnet

– Steepest ascent method give us a maximum

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

0

5

10

EHwL

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

Direction of the steepest
descent is normal to the
contour of the error

33

Mathematically

• Steepest descent

• Update w a bit along the direction

• The learning rate >0 is to be defined
appropriately

w
E





-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

0

5

10

EHwL

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

w
Eww currentnew




 

34

Actually

• A method to simplify
the calculation of gradients
is needed, because there
are hundreds (at the time)
or hundreds of thousands
variables exist.

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

0

5

10

EHwL

-2
-1

0
1

2
3w0

-3 -2 -1 0 1 2
w1

w
Eww currentnew




 

What was done: sound classification

(Gorman & Sejnowski,
NC 1(1), 75-89 (1988)) 36

What was done: speech recognition

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-3/www/ml.html 37

ALVINN：
An Autonomous land vehicle in a

neural network
• Made a tour on the interstate

(Dean Pomerleau 1995)

http://web.mit.edu/6.034/wwwbob/L9/node10.html
38

Navlab

39

Problems to be solved
• Inputs : N labeled samples ,௜ܠ ௜܊ , ݅ ൌ 1,… ,ܰ– ௜ܠ ∈ ࢊࡾ is a d-dimensional feature vector– ௜܊ ∈ ௖ࡾ is a c-dimensional label– ௜ܠ belongs to a class k → ௜܊ ൌ 0,… , 1, … , 0 where only k-th

element is １.

• Outputs: a function ࢍ –ܠ ௜ܠ ∈ ࢍ ,ࢊࡾ ܠ ∈ ௖ࡾ
– It classifies the training samples as correctly as possible– ݃ ௜ܠ ൌ ܾଵ, ܾଶ, … , ܾ௖• ௜ܠ belongs to k-th class→	ܾ௞>ܾ௜						݅ ് ݇	 40

Summary and a bit beyond it
A unit in neural networks

• A unit or a neuron is a basic construct of neural networks.
• It has a weight vector ܟ and a nonlinear function ݂.

• It returns a value in [0,1] by first obtaining an input vector ܠ, calculating ܠ்ܟ the inner product with the weight, and applying it to the non-linear
function ݂

• Note: the returned value becomes larger when the input vector ܠ is
more similar to the weight vector ܟ.

41

ଶݔଵݔ1
ௗݔ

∑

ௗݓଶݓଵݓ଴ݓ [0,1]
Inner
product

Non-linear
function

Connecting units in parallel
• Each unit returns large value when its input vector is

similar to its weight vector.
• When multiple units run in parallel, multiple class

classification becomes possible.

ଶݔଵݔ1
ௗݔ

ଵܟ∑ [0,1]

ଶܟ∑
[0,1]

ଷܟ∑ [0,1]

The input vector is similar
to the weight vector ,ଵܟ
the output value is large

The input vector is similar
to the weight vector ,ଶܟ
the output value is large

The input vector is similar
to the weight vector ,ଷܟ
the output value is large

Connecting units in series
• Insert intermediate layers between input and output layers.
• Input vector is transformed such that it could be

discriminated well →	linearly	non‐separable	cases	could	be	handled

43

ଶݔଵݔ1
ସݔ

ଵଷܟଵଶܟଵଵܟ

ଷݔଶସܟଶଷܟଶଶܟଶଵܟ
Feature extraction/elaboration classification

Intermediate layer’s role (1)

44

ଵݔ
ଶݔ

ଵ
ଶ

ଵ

ଶ

ଵ

ଶ

0.6
0.4

1.0

0.0

ଵܟ ൌ ଶܟ0.6,0.4 ൌ ሺ1.0,0.0ሻ݂ ݔ ൌ ଵଵାୣ୶୮ ିଶ௫

Class 1
(-2,-2)  (0.18, 0.18)
(-1,-1)  (0.12, 0.12)
(-1,-2)  (0.06, 0.12)
(-2,-1)  (0.04, 0.02)

Class 2
(0,-4)  (0.04, 0.50)
(2, 2)  (0.98, 0.98)
(0, 6)  (0.99, 0.50)
(-3, 4)  (0.40 , 0.00)

Intermediate layer’s role (2)
from Face direction recognition

... ...

left strt right up

30 x 32

http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-3/www/ml.html

Very old story

45

A result in intermediate layer

• Weights to intermediate layer

... ...

left strt right up

30 x 32

46

Intermediate layer’s role (3)

• Can this be learned?
Input Output
10000000 → 10000000
01000000 → 01000000
00100000 → 00100000
00010000 → 00010000
00001000 → 00001000
00000100 → 00000100
00000010 → 00000010
00000001 → 00000001

47

Result of learning

Input Output
10000000 → .89 .04 .08 → 10000000
01000000 → .01 .11 .88 → 01000000
00100000 → .01 .97 .27 → 00100000
00010000 → .99 .97 .71 → 00010000
00001000 → .03 .05 .02 → 00001000
00000100 → .22 .99 .99 → 00000100
00000010 → .80 .01 .98 → 00000010
00000001 → .60 .94 .01 → 00000001

Information compression – the root of encoder network

48

Result of learning

Input Output
10000000 → .89 .04 .08 → 10000000
01000000 → .01 .11 .88 → 01000000
00100000 → .01 .97 .27 → 00100000
00010000 → .99 .97 .71 → 00010000
00001000 → .03 .05 .02 → 00001000
00000100 → .22 .99 .99 → 00000100
00000010 → .80 .01 .98 → 00000010
00000001 → .60 .94 .01 → 00000001

Information compression – the root of encoder network

49

Intermediate layer’s role (4)
from NETTalk

• NETTalk: pronunciation of words
– Many rules available
– Many exceptions

NETTalk: cluster analysis

51

Interesting findings

Interesting things were found, i.e.,

In intermediate layers, some representation which
were not imagined by researchers was observed.
• The representations are meaningful.
• They are information compression and extraction.
• This will give again profound influence in the future

(now current) research.

52

MLP: a demo

53http://playground.tensorflow.org/

