Neural networks
an introduction

Akito Sakurai

Contents

* Overview
— Neurons and models

* Implementation in early days
— Perceptrons

* An introduction to MLP

What are neurons?

» “There is no such thing as a typical neuron”,
Arbib, 1997

Purkinje cel

(cerebeliar cortex) Axon

Axon

Granule cell
(cerebelar cortex)

Fig. 1. The morphologies of three common types of neuron. The fulllength of the axons is not
shown.
Note how the axon of the intemeuron branches extensively.

A typical(?) neuron

neuron. A drawing of a pyramidal cel showing the distribution of

Dynamics of neuron activity

40

20

-20

-40

membrane potential (mV)

-60

-80
0 10 20 30 40 50
time (ms)

Axonal End Branches

Axon
Neuron Cell Body
Synaptic
Axons from Connactions
Other Neurons
‘Dendrites

Figure 1.1 A typical neuron. It receives excitatory and inhibitory signals from other neurons by
way of the many synaptic connections (circled) they make onto the neuron’s cell body
and its extended tree of dendritic branches. It sums those various incoming signals
and emits an appropriate signal down its own axon, to make contact with further
neurons.

Paul M. Churchland (1996) The Engine of Reason, The Seat of the Soul

McCulloch and Pitts

» Warren S. McCulloch and Walter Pitts (1943) “"A logical
calculus of the ideas immanent in nervous activity",
Bulletin of Mathematical Biophysics, 5: 115-133.

excitatory input

inhibitory input

+ A very simplified (mathematical, computational) model

+ Any logical function can be realized by connecting the
model neurons.

A model neuron

A model neuron receives an input vector, processes it,
and outputs a value.
output = actiavtion_function(W - Input)

The model in early ages use the step function as an
activation function. Currently sigmoid or rectified
linear function are commonly used.

Output
Vi = fuj)

input
pattern

8 I 9
+ Rosenblatt, F. (1957). “The perceptron: A perceiving and recognizing
automaton (project PARA).”, Technical Report 85-460-1, Cornell
Aeronautical Laboratory. e Qverview
* Rosenblatt, F. (1962). “Principles of Neurodynamics.”, Spartan
Books, New York. — Neurons and models
* Implementation in early days
— Perceptrons
2 * An introduction to MLP
FIGURE 1. The one-layer perceptron analyzed by Minsky and Papert. (From Perceptrons
by M. L. Minsky and S. Papert, 1969, Cambridge, MA: MIT Press. Copyright 1969 by 10 11
MIT Press. Reprinted by permission.)
Perceptron: a polysemic word Perceptron
Perceptron: used to mean varying concepts 10 iw x50
= Linear threshold unit: the next slide N 0(X0 X X,)= &
= Original perceptron: as follows w;X;)
Siamoid unit or z DR ; o m -1 otherwise
= Sigmoid unit or any other similar units O
= Network of sigmoidal units: called multi-layer perceptron or MLP U o
= Network of linear threshold units: MLP but quite rarely used in this meaning Vector repr. O()?): sgn(i W): [1 ifw-x>0
In this class, we assume it means a sigmoidal network 1'1 otherwise
Original perceptron . 5
. Rosenblatt 1962 Perceptron: a single neuron unit model
=« Minsky and Papert 1969 = Alias: Linear Threshold Unit (LTU) or Linear Threshold Gate (%G)
= Netinput: a value of a linear function applied to inputs net = > w;x;
« Net output: a value of the threshold function applied to the net input (threshold 0 = w,)
= A function to obtain the net output by applying it to net input is called activation function
Perceptron Networks
Association = Anetwork of percey ected through weighted links w,
units 12 13

= Multi-Layer Perceptron (MLP):

Decision boundary of perceptron

X2 X2
+ +
+
/ X4 + X4
Example A Example B

Perceptron: can easily represent many important functions.

= Logical functions (McCulloch and Pitts, 1943)

= c.g., with simple integer weights AND(x;, x,), OR(x),x,), NOT(x)
Some functions are not representable

= e.g., linearly non-separable functions (just a paraphrase)

= To circumvent: construct a network of perceptrons

Perceptron learning algorithm

Perceptron Learning Rule (Rosenblatt, 1959)

= Idea: suppose that for each input vector, an output value is given. Then by updating
weights, the perceptron will become able to output the proper values.

= The unit assumes binary value; for a perceptron unit, the weight update formula is

- w; < w; + Aw;

w; = (t = 0)x;

where ¢ = ¢(x) is a target value for x, o is a current perceptron output value. The
second formula is sometimes expressed as Aw; = r(t — 0)x; where r is called a
learning rate. Because in the case of perceptron, r could be any positive value, giving
equivalent results, » =1 is preferred in the formula.

When the training set D is linearly separable , the algorithm converges in finite time.
Some literature requires » to be small enough, but it is wrong for the perceptron.

15

In a different way

Initialization: w is any vector. xe F = F+uU F -
Repeat

Selectall xeF in sequence in arbitrary order

If wx>0 and xeF* then continue;

If wx<0 and xeF* then FixPlusand continue;

If w-x<0 and xeF- then continue;

If wx>0 and xeF- then FixMinus and continue;
until no errors (neither FixPlus nor FixMinus is called)
FixPlus: W=t x

FixMinus: w=w-x

Linearly separable?

Definition
= Suppose 0 or 1 is a label f{x) of x in D. if there exists w and 6 s.t.
= Ax)=1ifwpx; +wye,+ ... +wyx, >0, 0 otherwise
= Dis called linearly separable.d is called a threshold.

Linearly separable?

= Note: D being linearly separable does not mean its population is so.
o Linearly Separable (LS)

= disjunction: ¢(x) =x,’vx,’v ... vx,’ Data Set
= mofn:c(x) =atleast3 of (x,) x)x,,") o
« exclusive OR (XOR): c(x) = x, ® x, o

= DNF:c(x)=T,vT,v. . ~vT;T=L,ALA... AL x
Transformation of expression
= Can we transform a linearly non-separable problem to a linearly separable one?
= Ifitis possible, is it meaningful? Realistic?
= Is it an important problem?
17

Convergence of the perceptron algorithm

Perceptron convergence theorem
= Claim: if there exists a weight vector w which is consistent with the training dataset (i.c., linearly
separable), the perceptron learning algorithm converges.
= Proof: Searching spaces are in order with a limit (width of wedge (searching space) decrease) —
Ref. Minsky and Papert, 11.2-11.3
= Note 1: how many repetitions are necessary until convergence?
= Note 2: what happens if it is not linearly separable?
Perceptron cycling theorem

« Claim: If a training dataset is not linearly separable, weight vectors obtained during the perceptron

algorithm form a bounded set. If the weights are integers, the set is finite.
= Proof: If the initial weight vector is long enough, its length is shown to be unable to become
longer; proven by a mathematical induction with the dimension #. — Minsky and Papert, 11.10
How to make it robust? Or to make it more expressive?
= Goal 1: to develop an algorithm which finds a better approximation

= Goal 2: to develop a new architecture to go beyond the restrictions

Universal approximation theorem

* A neural network with a single hidden layer
can approximate any continuous function
within a required accuracy if any finite number
of hidden units are allowed to use

Any number of units are

allowed to use if necessary. *°

Perceptron’s ability

* Perceptrons can
— Recognize characters (alphabets)
— Recognize types of patterns (forms etc.)
— Learn with a splendid learning algorithm

« Perceptron learning algorithm, as was seen, is able
to find a solution of any problems that has solutions
by perceptrons.

 Note: Existence of solutions does not help us to find
a solution.

20

Unfortunately

learnable

how to learn
was unknown

When an output is not as is required, some weights must be updated,
which is easily inferred. But how much they are changed was not
known at the time.

In short

» There exist problems that cannot be solved,
although a solution exists in a form of networks.
— Parity or XOR problem
— Connectivity of patterns
— In general, linearly non-separable problems

* Marvin L. Minsky and Seymour Papert (1969),
“Perceptrons”, Cambridge, MA: MIT Press

— Proved that perceptron is not capable to solve many problems.

— We can construct a network! Yes, but “we” must do it.

* McCulloch & Pitts neuron network is equivalent to Turing
machine (i.e. “universal”). OK but does it help us?
— If we do not know how to make it learn, it is useless.
* Does a learning algorithm of the network exist?

22

Exception at the time

Yy~
Cognitron

Sophisticated structure
Specific learning algorithm
Too advanced to be popular

L

—
/
Uy
=
- /
2 VN
A
Atva)
i . A
Bt ﬂ
()] 7<q

Fig. 4 a-c. Three possible methods for interconnecting layers. The connectable area
of each cell is differently chosen in these three methods. Method c is adopted for
the cognitron discussed in this paper

K.Fukushima, Cognitron: A self-organizing multilayered neural network, Biological Cybernetics 1975

Exception at the time

Neocognitron

Fig. 2. Schematic diagram illustrating
the interconnections between layers in
the neocognitron

L

K. Fukushima, Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of
Pattern Recognition Unaffected by Shift in Position, Biological Cybernetics (1980)

24

S-cell in Neocognitron

w=plx) 'g
. 3

N
UN) o e=3 aw)uw)
> val
35 x x20
3 v h=b-v 9ix]= {
£ 0 x<0
FIGURE 1. Input-to-output charscteristics of an S-cell: A typical example of the cell oyed in
K. Fi i i A Hi Neural Network Capable of Visual Pattern
Recognition, NeuralNetworks, Vol. 1, pp. 119-130, 1988 25

Contents

* Overview
— Neurons and models

* Implementation in early days
— Perceptrons

* MLP appears

26

PDP appeared

* The book “Perceptrons” was said to have delayed
researches in the field by two decades (pros and cons exist)

A turning point: D.E. Rumelhart, J.L. McClelland, eds.,
“Parallel Distributed Processing: Explorations in the
Microstructure of Cognition”, MIT Press, 1986.

— A compilation of articles: from mathematics to philosophy
— Many successful experiments on multi-layer networks

— Proposed “error back propagation algorithm”: unexpected influence on
learning algorithms.

— [Because similar techniques to BP were found before PDP (Amari
1967; Werbos, 1974, “dynamic feedback™; Parker, 1982, “learning
logic”), reinvention/rediscovery would be a better word to describe it.
But it has had a profound influence.]

27

Two important
inventions

Error Back Propagation’ |

» Basically it is for multi-layer feed-forward networks but
could be applied to other types of networks. /

Axonal ' AN

OO0 00O
» Weights are updated in proportion to backpropagated
errors

28

Reasons why PDP succeeded

» Changed the activation function of units
from the threshold function to the sigmoid
function

» Formulated the learning problem in the
error minimization problem. E.g.,

E(w) = Z (f (xx; w) — target value for x;,)
all samples: x
* Solved the (nonlinear multivariate)
problem by a naive method (steepest
descent)

29

Error Minimization

+ Do not pursue a complete solution (error=0)
— Our ability may be limited
— Samples may contain errors
— Samples may be of probabilistic events

» Consider (too naively) the sum of squares
of the difference between targets and
current outputs as the error.

* Find out weights that minimize the error

30

Sigmoid function

A method of minimization

» Solve equations obtained by equating the

gradients to be 0
2

E(w) = Z (f (xx; w) — target of x;)
o _
ow

» Because fis non-linear, we cannot solve it.

* An iterative method is to be sought, i.e., a method
that gives us w;, w,,w;--- such that

E(W1)>E(W2)> E(W3)>,,,

for all saples xj

0

32

Iterative method for minimization

+ Many efficient methods have been proposed
» The simplest one is the steepest descnet
— Steepest ascent method give us a maximum

wl
4 0 12

Direction of the steepest
descent is normal to the
contour of the error

33

Mathematically Actually
» Steepest descent * A method to simplify
OE the calculation of gradients
“ow is needed, because there
: o are hundreds (at the time)
* Update w a bit along the direction or hundreds of thousands &
e o ypewrent _ o OF variables exist.
aW new current aE
. . . W w -n—-
» The learning rate >0 is to be defined ow
appropriately 4

What was done: sound classification

=

g .
Output units

2 |
Q:w(L \\ \ W\
. L \
\\\ Sousm \
A\ s \\
rocx \)
&, Hidden units
>N \

0EBEEBEEEEOS mums

(.14 23 26 57 .46 .96 .75 .87 .61 .88 .50 .32 .04) Inputvector

0 Echo
05| Profle
0

(Gorman & Sejnowski, Frequency
NC 1(1), 75-89 (1988))

Power

36

37

http://www-2.cs.cmu.edw/afs/cs.cmu.edw/project/theo-3/www/mLhtml

ALVINN:
An Autonomous land vehicle in a
neural network

» Made a tour on the interstate
(Dean Pomerleau 1995)

30x32 Sensor
Tnput Retina

38

http:/iweb.mit.edu/. 9Inode10.htmi

Navlab

CROSs
ANDS A AME,
© A NAVLAB USA TOUR '95 R/C’q

- PG e P 2 » Golimbus OH i N N

eSaintl ouls MO skKansas Clty KA « Denver GO «Four Cormars
= Grand Ganyon slasVagas NV elos Angelas CA
= San Dlego CA

39

Summary and a bit beyond it
Problems to be solved

* Inputs : N labeled samples (x;,b;), i =1,...,N
- x; € R%is a d-dimensional feature vector
- b; € R is a c-dimensional label

- X; belongs to aclass k » b; = (0, ..., 1, ..., 0) where only k-th
elementis 1.

» Outputs: a function g(x)
- x; €R?, g(x) € R¢
— It classifies the training samples as correctly as possible

- g(x;) = (by, by, ., be)
* x; belongs to k-th class
—be>b; i#k 40

A unit in neural networks

A unit or a neuron is a basic construct of neural networks.
It has a weight vector w and a nonlinear function f.

It returns a value in [0,1] by first obtaining an input vector x, calculating
wTx the inner product with the weight, and applying it to the non-linear
function f

Note: the returned value becomes larger when the input vector x is
more similar to the weight vector w.

Non-linear
function

Inner
product

41

Connecting units in parallel

» Each unit returns large value when its input vector is
similar to its weight vector.

* When multiple units run in parallel, multiple class
classification becomes possible.

The input vector is similar
to the weight vector w?,
the output value is large

The input vector is similar
to the weight vector w?,
the output value is large

The input vector is similar
to the weight vector w3,
the output value is large

Connecting units in series

Insert intermediate layers between input and output layers.

Input vector is transformed such that it could be
discriminated well

- linearly non-separable cases could be handled

Feature extraction/elaboration classification

43

Intermediate layer’s role (1)

Very old story
Intermediate layer’s role (2)

X2 Y2
n from Face dlI'CCthl’l I'CCOgl’llthl’l
[
u
[[
A A
A A X1
AA
..' 6 08 1 yl
Class 1
(-2,-2) > (0.18,0.18)
0.6 (-1,-1) > (0.12,0.12)
X = _ (-1,-2) > (0.06, 0.12)
1 v Vi w; = (0-6,0-4) (-2,-1) > (0.04,0.02)
0 Wz = (10'00) Class 2
<) = 1 (0-4)>(004,050
X 1+exp(—2x) (2,2)> (0.98,0.98)
2 00 V2 P (0,6)>(0.99,0.50) 44 hitp://Awww-2.cs.cmu.edu/afs/cs.cmu.edu/project/theo-3/www/mLhtml 45
(-3,4) > (0.40, 0.00)
.o . . 5
A result in intermediate layer Intermediate layer’s role (3)
lft strt ri ht up
» Can this be learned?
Inputs Outputs Input Output
10000000 | — 10000000
30x 32 01000000 — 01000000
00100000 — 00100000
00010000 — 00010000
) 00001000 — 00001000
O\ N 00000100 — 00000100
773 00000010 |— 00000010
00000001 | — (00000001
46 47

Result of learning

Information compression — the root of encoder network

Inputs Outputs

Input Output
10000000 — | .89 .04 |.08 '— 10000000
01000000 — .01 .11 .88 |— 01000000
00100000 — .01 .97 .27 |— 00100000
00010000 — ' .99 | .97 .71 |— 00010000
X 1% 00001000 — .03 | .05 .02 |— 00001000
;l?& 00000100 — 22| .99 .99 |— 00000100
/';.‘ 00000010 — .80 | .01 .98 |— 00000010
00000001 — 60 .94 .01 — 00000001

48

Result of learning

Information compression — the root of encoder network

Inputs Outputs

Input Output

10000000 — | .89 .04 |.08 '— 10000000
01000000 — .01 .11 .88 |— 01000000
00100000 — .01 .97 .27 |— 00100000
00010000 — .99 | .97 .71 |— 00010000
00001000 — .03 .05 .02 |— 00001000
00000100 — ' 122 .99 .99 |— 00000100
00000010 — .80 .01 .98 |— 00000010
00000001 — 60 .94 .01 — 00000001

49

Intermediate layer’s role (4)
from NETTalk

+ NETTalk: pronunciation of words

— Many rules available
— Many exceptions

TEACHER:
[w l Il ‘/ee/ l s [1l 1 I ‘ rel | ,//J
cuss:
w | o | e | o [[[]
i}
/Nm
D BN
e | ~

HIDDEN

L TN NS

COOOS0 COBOCO 00000 COSOCO OGSO COBCO0 800000

INPUT

T T (- -l T-]

]

1 F
INPUT TEXT

Tuble I Symbols for phonemes used in NETralk

Symbol Phoneme Symbol Phoneme
7/ futher /cr chin
7o/ bet my this
et bought B/ bet
74/ debt G/ sing
se/ bake n bit
75/ fin K/ sevaal
e/ quess . bortle
/7 head ™/ absym
i Pete IN/ button
Y Ken 10/ boy
n let Y quest
/m/ met IR/ bird
o/ net s/ shin
ol boat i thin
% pet v/ book
a red W/ bout
/st it X/ excess
" rest G cute
rut Tae 17/ leisure
e vest 1@/ bat
Iwl wet n Nasi
Ix/ about /n examine
1y yet " e
12/ 00 /s Togic
Y bite " but

NETTalk: cluster analysis

30

ool

Pigure 7.6 Hierarchical clustering of hidden units for letter-to-sound correspondences. The vectors of average hidden
unit activity for each correspondence (“1-p” for letter 1 and phoneme p) were successively merging from right to left in
the binary tree. The scale at the top indicates the Euclidean distance between the clusters. (From Senowski and 51

Roscnberg 1987.)

Interesting findings

Interesting things were found, i.e.,

In intermediate layers, some representation which
were not imagined by researchers was observed.

» The representations are meaningful.
+ They are information compression and extraction.
+ This will give again profound influence in the future

(now current) research.

52

INPUT

MLP: a demo

+ — 1 HIDDEN LAYER

D &

4neurons

a
P
—

noQ

http://playground.tensorflow.org/

OUTPUT

Test loss 0.020

=

53

