
SVM: for non-linear separations
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Soft-margin classifiers
 If a training dataset is not linearly separable, we 

allow misclassifications for those that are difficult to 
classify or contaminated by noises by introducing 
slack variables ξi .

ξi

ξi

Soft margin formulation
 Hard margin formulation:

 Soft margin formulation with slack variables:

 Parameter C is thought to be a overtraining controller

Find w and b such that:
Minimize: Φ(w) =½ wTw ; 
Subject to:  yi (wTxi + b) ≥ 1 for all {(xi ,yi)}

Find w and b such that:
Minimize: Φ(w) =½ wTw + CΣξi ; 
Subject to :  yi (wTxi + b) ≥ 1 ξi for all {(xi ,yi)},  and

ξi ≥ 0 for all i

Soft margin solution
 Dual for the soft margin formulation:

 Note that no slack variables ξi nor Lagrange multipliers appear in the 
dual problem.

 Note also that again for non-zero αi , xi is a support vector.
 A solution of the dual problem is:

Find α1…αN such that:
Maximize: Q(α) =Σαi  ½ΣΣαiαjyiyjxi

Txj subject to
(1) Σαiyi = 0 , and 
(2) 0 ≤ αi ≤ C for all αi

w =Σαiyixi             
b= yk(1- ξk)  wTxk where k = argmax αk

k f(x) = Σαiyixi
Tx + b

Classification can be done 
without explicit appearance of w .
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Lagrangian of the primal problem is:

Because

the stationary points are

If we substitute them back to the primal problem:
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Classification by SVM
 For a given unseen point (x1,x2), measure 

the height to a hyper-plane （call it score）:
 For a 2-d case:  score = w1x1+w2x2+b.
 therefore: score = wx + b = Σαiyixi

Tx + b
 Let us define condfidence bound t. 
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score > t  : yes

score < -t : no

otherwise: don’t know
Any forced classification is granted



linear SVM:  a symmarys
 Classifier itself is a  hyperplane: separating hyperplane.

 The most important training samples are the support vectors because 
they define the discriminant function.

 A solution of the quadratic programming let us know which xi is a 
support vector corresponding to a non-zero lagrangian multiple αi .

 Note that the training samples appear only in the inner procuts in the 
dual problem and in a solution: 

f(x) = Σαiyixi
Tx + bFind α1…αN such that:

Maximize: Q(α) =Σαi  ½ΣΣαiαjyiyjxi
Txj

subject to
(1) Σαiyi = 0 , and 
(2) 0 ≤ αi ≤ C for all αi

Nonlinear SVM
 For a linear separable dataset, SVM works even with small noise:

 Does it work for a dataset which is not linealy separable? 

 In such cases, how about mapping them to a higher dimensional 
space?
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Nonlinear SVM:  a feature space
 A general idea:  any non-linearly-separable dataset 

become linearly separable when its feature space is 
mapped to a higher dimensional space:

Φ:  x → φ(x)

Higher dimensional space: a problem
 Computation time：

 If a dataset with 1001 samples is mapped to a 1000 dimensional space with 
an appropriate non-linear function, the dataset becomes linearly separable.

 But not only computation of the nonlinear function takes time, but also 
1000 times computation is required for each sample, the total computation 
time is huge.

⇒ “kernel trick” is utilized to reduce the computation time.

 Generalization capability：
 Any dataset with 1001 samples (in general position) can be separated 

linearly.
 This means that any target label set can be implemented by a hyperplane. 

It is definitely overtrained.

⇒ A solution to this problem is a large margin classifier.

Nonlinear mapping
 Consider a nonlinear function (x)               that 

maps a sample x to a high dimensional space F.
߮:ܴே → ܨ

,ܟሺܮ ܾ, હሻ ൌ ܟ12 ⋅ ܟ െ෍ߙ௜ ܟ௜ሺݕ ⋅ ߮ሺܠ௜ሻ ൅ ܾሻ െ 1௜
Primal Lagrangian: ܮሺܟ, ܾ, હሻ ൌ ܟ12 ⋅ ܟ െ෍ߙ௜ ܟ௜ሺݕ ⋅ ௜ܠ ൅ ܾሻ െ 1௜

,ܟሺܮ ܾ, હሻ ൌ෍ߙ௜௜ െ 12෍ߙ௜ߙ௝ݕ௜ݕ௝߮ሺܠ௜ሻ ⋅ ߮ሺܠ௝ሻ௜,௝
Dual Lagrangian:

෍ߙ௜ݕ௜௜ ൌ 0 and	∀݅ ߙ௜ ൒ 0
,ܟሺܮ ܾ, હሻ ൌ෍ߙ௜௜ െ 12෍ߙ௜ߙ௝ݕ௜ݕ௝ܠ௜ ⋅ ௝௜,௝ܠ

An example
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“Kernel Trick”
 Note that (x) appears only in an inner 

product such as (x)(y). 

 Therefore if a simple function K exists such that 
K(x,y)=(x)(y), then computational burden is 
reduced.
 Moreover if K(x,y) is a function of xy , much less 

computation is needed.

,ܟሺܮ ܾ, હሻ ൌ෍ߙ௜௜ െ 12෍ߙ௜ߙ௝ݕ௜ݕ௝߮ሺܠ௜ሻ ⋅ ߮ሺܠ௝ሻ௜,௝

Mercer’s theorem
 A function K is written in an inner product form:

if and only if K is symmetric and positive semi-definite. 
i.e., 

where i(x) is an eigen function of K(x,y) i.e.,
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Common kernel functions
 Linear kernel

 polynomial

 RBF

 MLP

 An example: For a 2-D vector x=[x1   x2] , set K(xi,xj)=(1 + xi
Txj)2

,
Then the following holds for K(xi,xj)= φ(xi) Tφ(xj):
K(xi,xj)=(1 + xi

Txj)2
,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1  xi1
2  √2 xi1xi2  xi2

2  √2xi1  √2xi2]T  [1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 
= φ(xi) Tφ(xj)         

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]
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SVM: generalization capability
 A classifier with high generalization capability is 

sought.
 How to get a better generalization performance?

 A larger training dataset
 Reduce errors for training dataset properly
 Larger capacity/variance (the number of

parameters and/or expressiveness of models)
 In SVM, an error bound for an unseen sample is 

given based on these values.

Risk bound by VC dimension
 Theoretical risk bound:

 Risk = average error rate
  – the model (parameters define it)
 Remp – empirical risk, l – # of observations, h – VC dim., 
 The expression holds with probability (1-η) 

 VC (Vapnik-Chervonenkis) dimension: maximum # of points 
which can be shattered

 A point set is shattered if any labeling of the points is 
realizable by a classfier.

 A very important theoretical property. But not often used.

ܴሺߙሻ ൑ ܴ௘௠௣ሺߙሻ ൅ ݄ሺlogሺ 2݈/݄ሻ ൅ 1ሻ െ logሺ 4ሻ݈/ߟ
Ex.: VC dim. Of a hyperplane
 Suppose that there are n points in a d dim. space, 

and they are labeled red or green. How large (as 
a function of d ) n should be for us to be able to 
find an example where red and green points are 
not linearly separable?

 Ex. For d =2, n  4.



A sketch:  theoretical evidence of margin 
maximization

 Vapnik proved the following: VC dim. h of a linear classifier set 
with margin greater than ρ has an upper bound:

where D is the radius of a smallest hypersphere that encloses 
all the training examples, and m0 is the dimension of the 
sample space.

 Intuitively, this shows that regardless of the dimension m0 of 
the sample space, by maximizing the marge ρ , VC dimension is 
minimized.

 In this way, we can reduce the complexity of classifiers 
irrelevant to the dimension of the sample space..
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Vapnik 1982: Estimation of Dependences Based on Empirical Data: Springer Series in Statistics (Springer Series in 
Statistics)   Springer-Verlag New York, Inc.

Performance of SVM
 Many believe SVM has the highest performance.
 Sometimes statistically relevant, sometimes not.

There are some that perform similar to SVM.
 Ex.: regularized logistic regression (Zhang & 

Oles)
 Tong Zhang, Frank J. Oles: Text Categorization Based on 

Regularized Linear Classification Methods. Information 
Retrieval 4(1): 5-31 (2001)

 Comparison: Yang & Liu
 Yiming Yang, Xin Liu: A re-examination of text categorization 

methods, 22nd Annual International SIGIR (1999).

 A dataset used quite often
 21578 documents
 9603 training, 3299 test articles (ModApte split)
 118 categories

 One article could belong to more than one category
 118 binary classes

 Average number of categories per 1 document
 1.24

 10 categories are significant（among 118 categories）

Significant categories
(#train, #test)

Ex.: A classic dataset Reuters

• Earn (2877, 1087) 
• Acquisitions (1650, 179)
• Money-fx (538, 179)
• Grain (433, 149)
• Crude (389, 189)

• Trade (369,119)
• Interest (347, 131)
• Ship (197, 89)
• Wheat (212, 71)
• Corn (182, 56)

Reuters Text Categorization data set 
(Reuters-21578) document

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" 
NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE>    CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off

tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining 
industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the 
future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate 
whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC 
said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the 
industry, the NPPC added. Reuter

&#3;</BODY></TEXT></REUTERS>

New Reuters: RCV1: 810,000 docs.

 Frequent categories in Reuters RCV1

http://about.reuters.com/researchandstandards/corpus/statistics/index.asp

Dumais et al. 1998: 
Reuters – Break-Even Performance

Rocchio NBayes Trees LinearSVM
earn 92.9% 95.9% 97.8% 98.2%
acq 64.7% 87.8% 89.7% 92.8%
money-fx 46.7% 56.6% 66.2% 74.0%
grain 67.5% 78.8% 85.0% 92.4%
crude 70.1% 79.5% 85.0% 88.3%
trade 65.1% 63.9% 72.5% 73.5%
interest 63.4% 64.9% 67.1% 76.3%
ship 49.2% 85.4% 74.2% 78.0%
wheat 68.9% 69.7% 92.5% 89.7%
corn 48.2% 65.3% 91.8% 91.1%

Avg Top 10 64.6% 81.5% 88.4% 91.4%
Avg All Cat 61.7% 75.2% na 86.4%

S. T. Dumais, J. Platt, D. Heckerman, and M. Sahami. Inductive learning algorithms and representations for text categorization. In 
CIKM-98: Proceedings of the Seventh International Conference on Information and Knowledge Management, 1998. 

Break Even: Recall = Precision
Recall: = TP/(TP+TN); 
Precision: = TP/(TP+FP); 



Precision vs. Recall - Category “Grain”
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Recall: = TP/(TP+TN); 
Precision: = TP/(TP+FP); 

Precision vs. Recall - Category “Earn”
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Precision vs. Recall - Category “Crude”
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Precision vs. Recall - Category “Ship”
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T. Joachims, Text Categorization with Support Vector Machines: Learning with Many Relevant 
Features. Proceedings of the European Conference on Machine Learning (ECML), Springer, 1998

Fig. 2. Precision/recall-breakeven point on the ten most frequent Reuters categories and microaveraged performance over all Reuters 
categories, k-NN, Rocchio, and C4.5 achieve highest performance at 1000 features (with k = 30 for k-NN and  = 1.0 for Rocchio). 
Naive Bayes performs best using all featurcs.

Yang&Liu: SVM vs others

LLSF: Linear Least Square Fit

Nnet: 64 hidden units
SVM kernel: linear (better than others)

# of features
NNet: 1000
NB:   2000
kNN:  2415
LLSF: 2415
SVM: 10000



Summary
 Support Vector Machine (SVM) is

 Defines a hyperplane utilizing support vectors
 Support vector = critical samples close to decision boundary

 linear SVM is a linear classifier.
 Kernel: maps samples to a higher dim. space where 

inner products are calculated easily
 Risk (expected error rate on test data) upper bound
 A best classifier when irrelevant features exist

 For 1000 features, svm is robut
 Popularized after free SVMlight

 Runs fast and free (for research purpose)
 A few others: TinySVM, libsvm, ….

 Still very common

SVR: support vector regression

Akito Sakurai

SVM is
a classification method which uses a linear function:

Let us use it for regression

SVR: Support Vector Regression A view: 
cost function = error + regularization

12෍ ௡ݕ െ ௡ݐ ଶ ൅ 2ߣ ݓ ଶே
௡ୀଵ

௡ሻݔሺݕఌሺܧ෍ܥ െ ௡ሻݐ ൅ 12 ݓ ଶே
௡ୀଵ

By a linear regression, minimize the following error func.

The squared error is replace by an –insensitive errir:

Ex. –insensitive error function:

Gunn. Support Vector Machines for 
Classification and Regression

ሻݕఌሺܮ ൌ ቊ 0 for ݂ሺݔሻ െ ݕ ൏ ሻݔሺ݂ߝ െ ݕ െ ߝ otherwise 	

Introduction of slack variables

௡ ௡ ௡
For target values are in 
this -tube:

To allow outer samples to 
be outside of -tube:

௡ ௡ ௡௡ ௡ ௡ି

Oprimization problem for SVR

௡ߦ෍ሺܥ ൅ ௡ିߦ ሻ ൅ 12 ݓ ଶே
௡ୀଵ

௡
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Subject to:

௡ ௡௡௡ ௡
and

Minimize:
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Primal:

Dual

ܹሺܽ, ܽିሻൌ െ12෍ ෍ሺܽ௡ െ ܽ௡ିሻሺܽ௠ െ ܽ௠ିሻ݇ሺݔ௡, ே	௠ሻݔ
௠ୀଵ

ே
௡ୀଵ െ ෍ሺܽ௡ߝ ൅ ܽ௡ିሻ ൅෍ሺܽ௡ െ ܽ௡ିሻݐ௡ே

௡ୀଵ
ே
௡ୀଵ

prediction:ݕሺݔሻ ൌ ෍ሺܽ௡ െ ܽ௡ି ሻ݇ሺݔ, ௡ሻݔ ൅ ܾே
௡ୀଵ

Maximize:

0 ൑ ܽ௡ ൑ 0ܥ ൑ ܽ௡ି ൑ ܥ
Subject to:

The constant term b

Karush-Kuhn-Tucker (KKT) condition:௡ ௡ ௡ ௡௡ି ௡ି ௡ ௡௡ ௡௡ି ௡ି௡ ் ௡
௡ ௠ ௠ି ௡ ௠ே

௠ୀଵ


