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& Linear discriminant function

L Decision boundary
° is linear:
ax+by-c=0
°
°

We want to find out a,b,c,
such that:

for red points ax+by=>c
for green pts. ax + by <c.

i Complex boundaries

From Christopher Manning’s slides

& Which hyperplane is to be chosen

= g,b,chave infinite possibilities.
= Any one of which is the best [we have
to define a standard to measure goodness]
= Consider the measure for the perceptron
learning algorithm if you know it
= SVM finds the “best” one.
= Hyperplane that maximizes distance to the
nearest “difficult point.
= Intuitive interpretation: the further the
points of the other classes are to the
decision boundary, the less the
uncertainty of decision is.

i Another intuitive interpretation

= Replace a decision boundary by a strip with non-
zero width. The narrower the width is, the more
easily the point on the other side could jump in

Support vector machine (SVM)

Support vectors

= SVM maximizes the margin
around the separating
hyperplane.
= called “large margin classifier”

= Decision function is determined
by its support vector which are
in the training dataset.

= Formulated as quadratic Margin to be
programming maximized

= Considered to work well for
wide variety of problems




Large margin classifiers

If the dataset is not linearly
separable,

= Allow errors, but
= Have to pay penalty for
the distance to the
nearest allowable
position
= While keeping the
margin large

Margin: formulation

= W: normal vector to the decision boundarn
= X;: i-th sample

= y;: class to belong (+1 or -1) Note: not 1/0
= classifier: sign(w'x; + b)

= Functional Margin of x;: Yi (WTx; + b)
= Clearly when w gets longer, margin gets larger

(Functional margin of a dataset is the maximum of them)

Geometrical margin
Distance from a sample to the hyperplane =W
Samples nearest to the hyperplane are support vectors.

Margin p of separating hyperplane designates how far the support
vectors of different classes are separated.

Linear SVM methematics

= Suppose that all the points are positioned further than hyperplane by
function value 1. Then, the following two constraints are obtained
from the training dataset {(x; ,)))}:

wix,+b2>1 ify,=1

wix;+b<-1 ify,=-1

= For the support vectors, the above inequalities become equalities;
Then, the margin is = 2/Ilwll because the distance from each
sample to the hyperplane is e wx+b
M

Assumption: The function (representing hyperplane) takes 1 and -1 on the
marginal hyperplane

Linear SVM
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= Constraints: Oo )

min_; . |wihx;+b| =1

= Rewritten to:
WI(X—X,) = 2
P=1IXXplla =2/ W][],

Linear SVM

= Formulated as the following quadratic programming:

Find w and b such that:
p :ﬁ is the maximal, and for all {(x;, )}
W

wix,+b>1ify=1; wix,+b<-1 ify,=-1

= A better formulation (min | [w] ]| =max 1/ | |w]] ):

Find w and 6 such that:

@(w) =Y2 w'w is the minimal, and for all {(x;,y,)}
v, (Wix; +b)>1




