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Linear discriminant function

We want to find out a,b,c, 
such that:
for red points ax + by  c

for green pts. ax + by  c.

Decision boundary 
is linear:

ax + by - c = 0

Complex boundaries

From Christopher Manning’s slides

Which hyperplane is to be chosen
 a,b,c have infinite possibilities.
 Any one of which is the best [we have 

to define a standard to measure goodness]
 Consider the measure for the perceptron 

learning algorithm if you know it
 SVM finds the “best” one.

 Hyperplane that maximizes distance to the 
nearest “difficult point.

 Intuitive interpretation: the further the 
points of the other classes are to the 
decision boundary, the less the 
uncertainty of decision is.

Another intuitive interpretation
 Replace a decision boundary by a strip with  non-

zero width. The narrower the width is, the more 
easily the point on the other side could jump in

Support vector machine (SVM)
Support vectors

Margin to be 
maximized

 SVM maximizes the margin 
around the separating 
hyperplane.
 called “large margin classifier”

 Decision function is determined 
by its support vector which are 
in the training dataset.

 Formulated as quadratic 
programming

 Considered to work well for 
wide variety of problems



If the dataset is not linearly
separable, 
 Allow errors, but

 Have to pay penalty for 
the distance to the 
nearest allowable 
position

 While keeping the 
margin large

Large margin classifiers
 w: normal vector to the decision boundarn
 xi: i-th sample
 yi: class to belong (+1 or -1)   Note: not 1/0
 classifier:  sign(wTxi + b)
 Functional Margin of xi : yi (wTxi + b)

 Clearly when w gets longer, margin gets larger

(Functional margin of a dataset is the maximum of them)

Margin: formulation

Geometrical margin
 Distance from a sample to the hyperplane
 Samples nearest to the hyperplane are support vectors. 
 Margin ρ of separating hyperplane designates how far the support 

vectors of different classes are separated. 
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Linear SVM methematics
 Suppose that all the points are positioned further than hyperplane by 

function value 1. Then, the following two constraints are obtained 
from the training dataset {(xi ,yi)}:

 For the support vectors, the above inequalities become equalities; 
Then, the margin is                   because the distance from each 
sample to the hyperplane is 

wTxi + b ≥ 1     if yi= 1

wTxi + b ≤ 1   if yi= 1 
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Assumption: The function (representing hyperplane) takes 1 and -1 on the 
marginal hyperplane

Linear SVM

 Hyperplane
wT x + b = 0

 Constraints:
mini=1,…,n |wTxi + b| = 1

 Rewritten to:
wT(xa–xb) = 2

ρ = ||xa–xb||2 = 2/||w||2

wT x + b = 0

wTxa + b = 1

wTxb + b = -1

ρ

Linear SVM
 Formulated as the following quadratic programming: 

 A better formulation (min ||w|| = max 1/ ||w|| ): 

Find w and b such that: 

is the maximal, and for all {(xi , yi)}

wTxi + b ≥ 1 if yi=1;   wTxi + b ≤ -1   if yi= -1
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Find w and b such that:
Φ(w) =½ wTw is the minimal, and for all {(xi ,yi)} 

yi (wTxi + b) ≥ 1


