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Model selection
• When there are plural of stochastic models that explain a set of 

data, we want to select one of them, which should be “the best.”

• What do you mean by best?
• How to implement it?

• The “best” means to output the prediction for an unseen input 
that has the smallest error among the models.

• A method: first, estimate “the error for the unseen sample”
– A method may use samples in

• Validation dataset, or/and
• Apply cross validation; and

– To estimate theoretically

Second, find the minimum

Model selection

• A method
– Select the model that has the smallest 

estimate of prediction (generalization) errors; 
by using unseen samples in:

• Validation dataset or
• execute cross validation

• Another method
– To estimate the generalization error based 

on some “information criteria”

k-fold cross validation

Divide the training dataset into    groups, train 
the model with the groups and measure  
the prediction errors on the remaining group 
(test set) ; and repeat the process   times by 
changing the test set.

It is not almighty, but works in many cases.
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CV measures goodness of algorithms/model architectures
CV is used to determine the best architecture and/or parameters.

Typical information criteria

• AIC

• MDL

Generalization capability
• Generalization capability is the one to 

measure how well the learned model works 
(not for training dataset but) for unseen 
dataset. 

• Training dataset is, in general, deteriorated 
by errors of labels or output values, which we 
call noises.

• Therefore, the goodness of fit to data, or  
GOFD, reflects not only finding regularity but 
also goodness of fitting to the noise.



Generalization capability

• GOFD 
= fitness to regularity (generalization 
capability)

+ fitness to noise, which is divergence 
from the regularity (over-fitting/over-
training)

Behavior in general

Complexity of modellow high
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GOFD

Generalization capability＝
Goodness of Fit to Unseen Data, 
Goodness of Fit to Population

Over-training

Small error

Large error

“complexity” is not really complexity. It is rather degree of freedom to change a
function. Even the shape of f(x)=0 is complex, if is has no parameter, it can fit to a 
very limited set of boundaries for classification. 
In the figure above, if you have a sin function, supposing that the left most middle 
point is  origin and the white band oscillates between -1 and +1, then  the sin 
implements the  classification. If, though, the points move 0.2 along the x-axis, the 
sin function cannot separate the points. But if the function space is of one 
parameter family as sin( x + p) where p is a parameter then a function in the space 
would separate the points.

bias

noise

10

Sampling bias and class noise

Generalization capability

• The higher the complexity of the model 
is, the higher the probability of over-
training

Complexity of modellow high
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GOFD
Over-training

Small error

Large error

Test/training error

Test/
training
error

Complexity of models

Training error

Test error

Complexity of modellow high
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Bias-variance decomposition
• By using a learned model, let us decompose the squared error 

that is associated with unseen samples into bias^2 + variance 
which correspond, intuitively, to 
– difference between the “mean of models” and the ground truth,
– Difference between each model and “the mean of models”

respectively

Functional space

Ground truth
Hypothesis space

Models being 
varied with 
training dataset

Mean of 
models

Bias^2

variance

Bias-variance decomposition
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Expected loss

Bias-variance decomposition
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Bias-variance decomposition
Consequently ஽ܧ ܮ ;଴ݔ ܦ is
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Expectation based on 
D of prediction of ݂ ଴ݔ

Square of bias

True value of ݂ ଴ݔ
variance

Prediction of ݂ ଴ݔ which 
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A simple example （20 points）
y = x + 2*sin(1.5*x)+N(0,0.2)
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50 linear regressions
(20 points for each)

at x=5at x=3
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Distribution of predictions
at x=5

Distribution of the true 
value + noise ( N(0,0.2) )

Mean of the 
predictions 

(approx. 5.1)
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推定値の密度分布 at x=5

True value + noise 
（ N(0,0.2) ）

Average of 
estimation 

(approx. 5.1)
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estimations by 20th degree polynoial
 ( mean= -0.118 sd= 57.2 )
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estimations by 15th degree polynoial
 ( mean= 0.659 sd= 9.87 )
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estimations by 9th degree polynoial
 ( mean= 1.05 sd= 0.58 )
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y at x=3

de
ns

ity

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

estimations by 3rd degree polynoial
 ( mean= 2.88 sd= 0.675 )
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Note: at x=3; even in higher order, outliers exist

Prediction error vs. complexity

model complexity  larger

Squared 
pred. 
error

bias2

variance

bias2+variance

noise_variance

Squared prediction error for unseen sample：
bias2+ variance+ noise_variance

High bias

Low bias

Low 
variance

High 
variance

ideal

reality

Generalization capability
• The higher the degree of freedom of models is, the 

better GOFD is (i.e., better fitting).

• The fit to the training dataset is required to be good. 
But it does not mean that the fit to the test dataset is 
good enough. In other words, it does not mean that 
the model discovers a true hidden regularity.

• That is, the goodness (to some degree) of fit is not 
sufficient, although it is necessary

• Goodness of fit to any test dataset is generalization 
capability

Good to some degree; not too good



Model selection

• Generalization capability is the key to best 
utilization of machine learning

• The essence is:
• GOFD = fit to regularity (gen. cap.)

+ fit to biases/noises (over-training)
• Gen. cap. = GOFD – over-training
• Gen. cap.  GOFD – complexity
• Therefore, – gen. cap.  – GOFD + complexity

Complexity

• If we could define complexity properly, 
could we estimate the generalization 
capability reasonably well?
– By selecting a model based on the 

estimated generalization error, we could 
expect that the model truly minimizing 
generalization error is obtained (?).

AIC and MDL are typical solutions (there are many others)

AIC

• Akaike Information Criterion (AIC)
• Akaike himself coined a term “An Information 

Criterion.” But after some time, the name 
mentioned has become in common use

• AIC itself represents badness of 
generalization capability, i.e., the larger 
AIC is, the worse the model is.
Hirotugu Akaike. Information theory and an extension of the maximum likelihood 
principle. Proc. 2nd International Symposium on Information Theory (B. N. Petrov 
and F. Csaki eds .) Akademiai Kiado, Budapest, (1973) 267-281. 

Hirotugu Akaike. Determination of the number of factors by an extended maximum 
likelihood principle. Research Memorandum 44, Inst. Statist. Math. (March 1971).

The first 
one is:

AIC

• AIC = -2 log L(    |D) + 2k
– D: training dataset
– : the maximum likelihood estimator (MLE)
– L : likelihood（ L(    |D) = Prob(D|    ) ）
– k : the number of parameters that specifies 

the model
– log : the natural logarithm

̂

̂ ̂
̂

AIC

• measures the model’s complexity by the 
number of its parameters. 

• Does not consider the complexity of 
functional form （f: parameters 

）

What is complexity of functional form?
In the first place, what is the functional form?
It should be difficult but worth to contemplate.

Distance between distributions.

close further

The true model



KL-divergence
• KL-divergence (Kullback-Leibler divergence) is a pseudo distance 

between two distributions, which is not mathematical distance.
• For two distributions      and        where  

• Properties of  ：

• Not symmetric. Triangle inequality does not hold.
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Note: cross entropy

MDL

• These are coded by a programming 
language as follows:

– 0001000100010001000100010001
• 7.times{ print "0001" }

– 0111010011010000101010101011
• puts("0111010011010000101010101011")

MDL

• Regularity is vital to compress data.
• In general, the more regular the data is, 

the shorter the program is, although the 
real length of the compressed data 
depends on coding method.
– Selection of coding method is a minor 

problem in theory, because the term 
relating to the coding method is upper 
bounded by a constant.

MDL
• Suppose a program is a model.
• In general, the program that grasps 

regularity in data most is a shortest 
program, i.e., a shortest code.
– 0001000100010001000100010001

• 7.times{ print "0001" }
– 0111010011010000101010101011

• puts("0111010011010000101010101011")

Regularity or randomness of a sequence is defined.
Standard definition of randomness is for data source not for a 
sequence generated.

more regular
more random

MDL

• If a model captures regularity in data, the 
model can predict the next data to come 
more correctly. That is, it shows better 
generalization capability.

• In other words, a model with the shortest 
length is the model whose prediction 
capability is the highest.

0001000100010001000100010001
7.times{ print "0001" }
puts("0001000100010001000100010001")

Occam’s razor
• What is known most is:

– Entities should not be multiplied beyond necessity.
• According to Bertrand Russell

– It is vain to do with more what can be done with 
fewer.

• Most common interpretation:
– Among the theories that are consistent with the 

observed phenomena, one should select the 
simplest theory.



MDL and Occam’s razor
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MDL 


ex. bit length to 
describe h.

• Occam’s razor: “Choose the simplest”

h being given, bit length 
to describe D

This is not practical. Feasible formulations are:
1. Stochastic MDL by Rissanen
2. MDL based on program complexity by Kolmogorov/Chaitin and 
a group of Lin & Vitanyi

 The number of 
misclassified data

 Bit length of 
corresponding codes

length of hypothesis length of residuals (errors)
MDL: Select a hypothesis that minimize:
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Code theoretic interpretation
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length of code for hypothesislength of code for conditional probability

Note: probability and code length

• Suppose a set X is finite or countable
– A code C(x) of X is:

• A 1-to-1 mapping from X to Un>0{0,1}n

• LC(x): code length in bits when a code system 
C is used.

– P: a probability distribution defined on X.
• P(x):  the probability of x
• An observed sequence (iid) x1, x2, …, xn: xnܲ ௡ݔ ൌ ∏ ܲ ௜௡௜ୀଵݔ

Stochastic MDL

• Under stochastic framework, i.e., when 
data distributes, MDL principle is:
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Badness of fit (error)

Penalty for the number 
of parameters

Penalty related to 
form of probability 
distribution

J.Rissanen, Modeling by shortest data description. Automatica, vol. 14 (1978), pp. 465-471. 
J.Rissanen, Fisher information and stochastic complexity. IEEE Trans. Information Theory,
vol. 42 (1996), pp. 40-47. 

MDL Reading http://www.mdl-research.org/reading.html

Comparison of AIC and MDL
• Let us compare AIC and MDL:

• The second terms say:  When N is large, MDL is larger than AIC. 
This is why MDL prefers a model with smaller number of parameters. 
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This is clearly visible when Bayesian network is learnt.
Try it with Weka.


