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Bayes Theorem
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Ex.（Mitchell Chap. 6.2）

Suppose we now observe a new patient for whom the lab test 
returns a positive result. Should we diagnose the patient as 
having cancer or not?
The test returns a correct positive result in only 98% of the cases 
in which the disease is actually present and a correct negative 
result in only 97% of the cases in which the disease is not present.
Over the entire population of people only .008 have this disease.

= .209
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P(+) =

P  cancer) =.03

.992P(cancer) =.008P(cancer) =

.02P  cancer) =.98
P(+ | cancer) = .97
P(+ | cancer) =

=.0376

Cancer: 0.8%

Cancer: 99.2%

negative: 2%positive: 98%

negative: 97%positive: 3%

Ex.（Mitchell Exercise 6.1）

Suppose the doctor decides to order a second laboratory test for the same 
patient, and suppose the second test returns a positive result as well. What are 
the posterior probabilities of cancer and cancer following these two tests? 
Assume that the two tests are independent.

P  cancer) =.03

.992P(cancer) =.008P(cancer) =

.02P  cancer) =.98
P(+ | cancer) = .97
P(+ | cancer) =

= .896P(cancer | +1+2) = )(
)()|(

21

21




P
cancerPcancerP

P(+1+2 | c’r) P(c’r) + P(+1+2 | c’r) P(c’r)P(+1+2) = =.00858

Basic Probability Formula

P(A|B) P(B) = P(B|A) P(A)

P(A) + P(B)  P(AB)

P(B) =

P(AB) =

Law of total probability:
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P(AB) =

Multiplication rule (conditional probability):

Addition rule:

(Product rule)

(Sum rule)



Hypothesis selection
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P(h) = prior probability of a hypotheses h
P(D) = prior probability that data D will be observed
P(h|D) = probability that h holds given that D is observed
P(D|h) = probability of observing data D given h

Note: The conditional probability does not necessarily reflect a causal relationship, if any.

We can estimate the probability that h holds under the condition 
that the training data D is observed.
We can, then, estimate the probability that D is sampled under h.

Note: Is it possible to think of the "probability that a hypothesis holds"

Posterior probabilities 

P(h| D1 ∪ D2)

Hypotheses

P(h)

Hypotheses

P(h|D1)

Hypotheses
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Finding the most probable hypothesis h ∈ H given 
the observed training data D should be most 
interesting.
Maximum a posteriori hypothesis hMAP: 
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ML

Suppose that P(hi) = P(hj) for any i,j, we get 
Maximum Likelihood (ML) hypothesis

݄ெ௅ ൌ argmax௛∈ு ܲሺܦ|݄ሻ
݄ெ஺௉ ൌ argmax௛∈ு ܲሺܦ|݄ሻܲሺ݄ሻCompare it with:

An interpretation of ML
 In the real world, the prior distribution 

is thought to be unknown, 
incomputable,  or non-existent. 
 E.g., does a prior distribution exist for 

words in documents? Doesn’t it differ in 
age groups, social background, and others.

 If the existence of a prior distribution is 
questionable, likelihood-maximization is 
a reasonable choice.



Most probable classification

 So far, we have obtained the most 
probable hypothesis given D (hMAP).

 How about most probable class of a 
sample?
 hMAP(x) does not predict the most probable class.

 What is the most probable classification of x ?
 3 hypotheses: P(h1|D)=0.4, P(h2|D)=0.3, P(h3|D)=0.3
 Predictions for a sample: h1(x)=+, h2(x)=–, h3(x)= –hypothesis1

hypothesis2
hypothesis3

Bayes optimal classification
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Note: Bayes optimal classifier must not be in H.

Note: Feasible? Doesn’t it take time for computation?

Note: Many papers report that it works well; but when we tried we often 
found no improvement in accuracy compared to MAP or ML. Why does 
this happen?

hypothesis1
hypothesis2

hypothesis3

Ex. (Mitchell Chap. 6.7)

P(h1 | D) = .4 P(  | h1) = 0 P( | h1) = 1
P(h2 | D) = .3 P(  | h2) = 1 P( | h2) = 0
P(h3 | D) = .3 P(  | h3) = 1 P( | h3) = 0
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Bayes optimal classifier

 Suppose that D={x1,…,xn } is observed from a 
distribution P(X;θ) with the parameter θ. We want 
to estimate y for an unseen x given D.

 Method 1: Estimate θ and then predict by P(X;θ)
 MLE (max. likelihood)
 MAP (max. a posteriori)
 Expectation (posterior mean)

 Method 2: without estimating the parameter θ.ܲ ܻ, ߠ ܦ ൌ ܲ ܻ, ܦ ߠ ܲሺߠሻ/ܲሺܦሻܲ ܻ ܦ ൌ නܲ ܦ,ܻ ߠ ܲሺߠሻ/ܲ ܦ ߠ݀

ெ௅ாߠ ൌ argmaxܲ ܦ ெ஺௉ߠߠ ൌ argmaxܲ ܦ ߠ ܲሺߠሻ
መߠ ൌ නܲߠ ߠ ܦ ߠ݀ ൌ නܲߠ ܦ ߠ ܲሺߠሻ/ܲሺܦሻ݀ߠ

Basic ideas of Bayesian inference

 Bayesian view is that we can measure uncertainty, 
even if there are not a lot of examples
 What is the probability that a debut team will win the 

championship league this year?
 Cannot do this with a frequentist approach

 What is the probability that a newly minted particular coin 
will come up as heads?

 Without much data we utilize our initial belief as the prior
 But as more data comes available we transfer more 

of our belief to the data (likelihood)
 With all the data, we do not consider the prior at all
 Belief is coded as a probability distribution 
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An example: basic ideas
 Assume that we want to infer the mean μ of a 

random variable x where the variance σ2 is known 
and we have not yet seen any data

 P(μ|D,σ2) = P(D|μ,σ2)P(μ)/P(D) ∝ P(D|μ,σ2)P(μ)
 A Bayesian would want to represent the prior μ0

and the likelihood μ as parameterized distributions 
(e.g. Gaussian, multinomial, uniform, etc.)

 Let's assume a Gaussian just here
 Since the prior is a Gaussian we would like to 

multiply it by whatever the distribution of the 
likelihood is in order to get a posterior which is also 
a parameterized distribution specifically Gaussian
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Conjugate Priors

 P(μ|D, σ0
2) = P(D|μ)P(μ)/P(D) ∝ P(D|μ)P(μ)

 If the posterior is the same distribution as the prior 
after the multiplication, then we say the prior and 
posterior are conjugate distributions and the prior is 
a conjugate prior for the likelihood

 In the case of a known variance and a Gaussian 
prior we can use a Gaussian likelihood and the 
product (posterior) will also be a Gaussian

 If the likelihood is multinomial then we would need 
to use a Dirchlet prior and the posterior would be a 
Dirchlet

20

Discrete Conjugate Distributions

From Wikipedia

Continuous Conjugate Distribution (1)

Wikipediaより

Continuous Conjugate Distribution (2)

From Wikipedia From Wikipedia

Continuous Conjugate Distribution (3)



An illustrative example of Bayes 
inference

 Prior dist.:      P(μ)      = N(μ | μ0,σ0
2)

 Posterior dis.: P(μ | D) = N(μ | μN,σN
2)

 What we believe moves from the prior 
distribution to data 25

ேߤ ൌ ଴ଶߪଶܰߪ ൅ ଶߪ ଴ߤ ൅ ଴ଶߪ଴ଶܰߪܰ ൅ ଶߪ ேଶߪெ௅1ߤ ൌ ଴ଶߪ1 ൅ ଶߪܰ
ெ௅ߤ ൌ 1ܰ ෍ ௡ேݔ

௡ୀଵ ଶߪ ൌ 1ܰ െ 1෍ሺݔ௡ െ ே	ெ௅ሻଶߤ
௡ୀଵ

An illustrative example of Bayes 
inference
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An illustration of Bayesian Inference 
for the location parameter  of a 
Gaussian distribution assuming the 
variance is given. The curves show 
the prior distribution of  (the curve 
labelled ܰ ൌ 0) (this, too, is a 
Gaussian), along with the posterior 
distribution when increasing ܰ. The 
data points are generated from a 
Gaussian of location and variance 
parameters 0.8 and 0.1 respectively, 
and the prior is set to have location 
parameter 0. Also in the prior 
distribution and the likelihood 
function, the true variance is known.

An example of Bayes inference
 In this example, if the mean is known and the 

variance is unknown, the conjugate prior is the 
inverse-Gamma.
 If precision (inverse of variance) is used, the conjugate 

prior is gamma distribution.
 If mean and variance is unknown, the conjugate 

prior is normal-inverse-gamma (a combination of 
normal and inverse-gamma distribution).

 A generalization of this for multivariate case is  
distribution for multiple dimensions is the normal-
inverse-Wishart distribution.
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An example of Bayes inference

 P(μ,σ2 | D) = P(D |μ,σ2)P(μ,σ2)/P(D) 
∝ P(D |μ,σ2) P(μ |σ2)P(σ2)

 prior: P(μ |σ2) = N(μ | μ0,σ2/k0), 
P(σ2) = IG(σ2 |r0/2,s0/2) 

 posterior: P(μ | σ2 ,D) = N(μ | μN,σ2/kN ), 
P(σ2) = IG(σ2 |rN/2,sN/2) 
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Gibbs classifier

1. Select a hypothesis randomly according to
P(h|D) 

2. Classify a new example following the h

Good news: If a hypothesis is randomly 
sampled from P(h) ,

E[errorGibbs]  2E[errorBayesOptimal]

(See “Mitchell Machine Learning Chap. 6.8”)

Effective when there are so many hypothesis that a Bayes optimal is hard to 
calculate and we repeat the inferences
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Two types of target values

 Categorical val.: classification problem
 To divide（explanatory variable） space

 Boundaries are to be obtained
 Category value range

 Continuous val.: regression
 Discrete values, too

When continuous func. is 
used, these are the same.
(1) e.g. 0 value-set, 1 
value-set etc. are 
boundaries
(2) e.g. non-integer value 
area represents a category

Note: discrete function is not easily 
approximated by continuous one, so 
that regression framework is not 
straightforwardly applied to it

Note

 For categorical values (assuming searching for 
continuous functions that assumes 0 on boundaries)

 Close to 0＝close to boundaries＝not sure
 Suppose that confidence level is represented by 

a real value between 0 and 1, it is, in the sub-
area of a category, 
 in the middle＝confident＝close to 1, 
 close to boundary＝not sure＝close to 0,
then the framework is of regression
 The values are ids of category

-1

-1

-1

-1

-1

-1

-1-1
+1 +1

+1

+1
+1

+1

Another viewpoint

 Probability and the number of samples
 If we use probability, not definite value, to 

represent the level of belongingness to a 
class, we could suppose that the frequency 
of samples reflects the probability

 Confidence level and the # of samples
 Confidence level of being in a subarea for a 

point is considered to be proportional to 
the number of samples around the point.

0

1 In summary

Target 
value

Categorical value Continuous 
value

Concept 
and 
method

Find boundary to minimize the # 
of errors

Regression of 
target values 
(minimize 
average errors）

Regression 
of 
Categorical 
id values

Rounded outputs are 
considered to be id
Fractional part of 
outputs is confidence

Estimate distributions considering 
inputs as samples from a 
population (density estimation)

How to understand NN outputs

Value for regressionCategory id for classification

Although classification class is
taught, output values is 
considered to be probability.

Although classification class is
taught, output value is rounded to 
be considered as category id.

When a standard sigmoid function or the softmax is used as
the final activation function, outputs are between 0 and 1.  

0

1

Class areas and boundaries



Learn to predict probability

0

1

Why do NNs learn probability, although just classes are taught?

In online learning, frequency is 
learning by counting.

Is it similar to logistic regression?

Regression to learn reals

f

e
hML

By the way, what is regression?

Statistical interpretation

Training samples: <xi,di> where
di = f(xi) + ei
ei is noise = prob. var. distributed to a

normal distribution (iid) of mean=0 and 
finite deviation

iid=independent, identically distributed

Then: 
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Squared error is not appropriate
to predict probability 

 Ex. Learning survival rate from data
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di is 0 or 1  (or 
probability belonging 
to a class)
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目次

 Bayes 定理

 MAP と ML
 Bayes 最適分類器, Gibbs アルゴリズム

 クラスの推定か確率の推定か

 Naïve Bayes
知的情報処理の復習

Naïve Bayes classifier

 Since (although?) simple, it is wellknown
 More accurate than expected, although simple
 Fast as is expected, since simple

 Bayes Theorem + Assumption conditional 
independence
 The assumption hardly holds in the real world
 In the real world, though, it works well

 Successful applications: 
 Text classification,
 Diagnosis, and many others

Naïve Bayes is not a Bayesian

Difficulty in Bayes classifier
 Recall that for a set of attributes <a1,…,an> of 

x, to infer the class that x belongs

 Difficulty: Huge dataset is required to infer
P(a1…an|cj), since there are huge number of 
parameters (|Ai|) (for two value attributes, 
2n parameters for n attributes)
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Naïve Bayes classifier

 Naïve Bayes assumption: attributes are 
mutually independent when the class is 
given
 P(a1,…,an|cj) = P(a1|cj) P(a2|cj) … P(an|cj)
 conditional independence (given the class)
 Reduces the number of parameters to infer: 

|Ai| (=O(2n))   |Ai| (=O(n))
 Under this assumption, cMAP becomes





i

jij
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)|()(maxarg

Naïve Bayes: an Algorithm
Training (for a set of instances)

Estimate the probability that an instance x 
belongs to a class cj

P^ (cj) = P(cj) 's estimator
Estimate the probability that the i –th attribute 

value of an instance x belonging to the class cjis ai .
P^ (ai|cj) =  P(ai|cj) 's estimator

Class(x)
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Naïve Bayes: Estimation
 How can we estimate P(cj) and P(ai|cj) ?

 A standard method that statistics tells us
 Use frequency of the samples
 P(c) is estimated by count(c) / N
 P(A|B) is estimated by count(A  B) / count(B)

 Example: 100 samples. 70 + and 30 –
 P(+)=0.7 and P(-)=0.3
 Among 70 positives, in 35  a1=SUNNY
 P(a1=SUNNY|+)=0.5



Example: Play Tennis 
Outlook Temp. Humidity Windy Play

Sunny Hot High No No

Sunny Hot High Yes No

Overcast Hot High No Yes

Rainy Mild High No Yes

Rainy Cool Normal No Yes

Rainy Cool Normal Yes No

Overcast Cool Normal Yes Yes

Sunny Mild High No No

Sunny Cool Normal No Yes

Rainy Mild Normal No Yes

Sunny Mild Normal Yes Yes

Overcast Mild High Yes Yes

Overcast Hot Normal No Yes

Rainy Mild High Yes No

From Tom Mitchell's Machine Learning 

Outlook Temp. Humidity Windy Play

Sunny Cool High True ?

Please infer if on the following day 
they played tennis or not

There are two classes: to play tennis 
(Play=Yes) and not to play tennis 
(Play=No)

49

A solution
 For the PlayTennis , and a new instance

<Outlook=sunny, Temp=cool, Humid=high, Windy=true>
 We want to calculate:


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0206.0)|(ˆ)|(ˆ)|(ˆ)|(ˆ)(ˆ
0053.0)|(ˆ)|(ˆ)|(ˆ)|(ˆ)(ˆ
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NtruePNhighPNcoolPNsunnyPNP

YtruePYhighPYcoolPYsunnyPYP

NocNB 

Naïve Bayes: Conditional independence

 Is it necessary?
 What happens if the assumption does not hold?

 i.e. if P(a1,…,an|cj)  P(a1|cj) P(a2|cj)…P(an|cj)
 If the following (weak) condition holds, the 

prediction is the same as Bayes classifier:

 But, the probability obtained in the prediction 
happens to be unrealistically close to 0 or 1
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Naïve Bayes: a Problem
 What happens if an attribute value ai is not 

observed for a class cj ?
 Estimator of P(ai|cj)=0 because count(ai  cj) = 0
 Big impacts: if this is 0, any products are 0 !

 A solution: use Laplace correction.


 n : # of training samples for c = cj
 nc : # of training samples for c = cj and a = aj
 p : prior probability (estimator) P^ (ai|cj) (uniform 

distribution is common)
 m : pseudo-count (commonly the number of attribute values)

mn
mpncaP c

ji 


)|(ˆ

m=1 is another choice which works better in many cases, too

Note: Laplace correction

 (in parameter estimations from frequency)
supposing a prior distribution for the 
parameter, obtain a MAP estimator.

 Beta distribution is the prior: 
f(x;,)=x1(1x)1/B(,) 

 The posterior mean of the parameter is 
the Laplace correction. If the likelihood is 
a result of a Bernoulli trial: ଴ ଴ ଵ

Note: smoothing
 In an estimation of statistical model, assigning a small probability to 

events that did not occur is called smoothing

 In natural language processing, frequencies of a word or a sequence of 
n words (n-gram) are often used. When n grows, n-gram becomes 
scarce, i.e., many n-grams do not occur. To solve the problem many 
techniques were invented.
 Laplace smoothing (additive smoothing)
 Linear interpolation
 Good-Turing smoothing
 Katz smoothing
 Church-Gale smoothing
 Witten-Bell smoothing
 Kneser-Ney smoothing
 ….
 Hierarchical Pitman-Yor language model

http://www.jaist.ac.jp/project/NLP_Portal/doc/glossary/index.html
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Text classification
 Texts classification:

 Classifying documents (mail, news, web pages, etc. or a 
paragraph, a sentence, etc.)

 Classifying e-mails into spam or not.
 Classifying blogs into splog or not
 Classifying news into interesting or not (to a person)
 Classifying reviews of a product into groups of good reputation or 

not
 Classifying reviews into trustable or not
 Classifying open ended questions for questionnaire surveys
 Classifying Q and A's at a call-center.

 Naïve Bayes works well
 How to apply Naïve Bayes ?
 Point: How to represent a sample (i.e. document), attributes?

Document representation
 Bag-of-words

 Document as a vector of frequency of words in it
 "Bag" implies discarding positions where the word occurs, and
 disregarding the sequences (contexts) of a word
 i.e. if keio, gijuku, and university are words, there would be no 

difference between keio gijuku university, keio university giju, and 
gijuku keio university

 "what are words" is important, which should not differ among 
documents.

 In English, "dog" and "dogs" should be treated as the same
 Ignore words not relevant to classification

 In Japanese, particles such as ha, ga, mo, ya, etc are the ones
 In English, prepositions
 The words that have syntactic function but have no meaning are 

called functional words.
 Ignore words that are close to noise

 Very low frequent words such as appearing just once.

Document representation (cntd.)

 Representation itself is like naïve Bayes 
 Because representation is not inference, it is not naïve Bayes, 

but it really looks like naïve Bayes.

 Probability of the occurrence of a document is formulated in 
naïve Bayes fashion.

 Suppose that for each class of documents, the probability that 
a specific word occurs in a document is known as P(w1 |cj),
P(w2 |cj), …, P(wn |cj) . If w1, w2,…, wn are the words that occur 
in a document, then the probability that the document occurs is
P(doc|cj)=P(w1 |cj)TF(w1) P(w2 |cj)TF(w2)… P(wn |cj)TF(wn)

where TF(w) is the term frequency of a word w in a document doc

出現確率をこう書けば naïve Bayes といえよう

Document classification by 
Naïve Bayes

 For a document doc,

where TF(wk,doc) = frequency of wk in doc and Voc is a set of all the words 
that we consider 

 To represent word frequencies in a document, we need Laplace correction.  
The following estimator is used;  where nj=the number of words in a class 
cj , nk,j=the number of occurrences of word wk in class cj .
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Twenty News Groups (Joachims 1996)

 1000 training documents in each group
 Assign new documents to one of newsgroups

comp.graphics
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware

comp.sys.mac.hardware
comp.windows.x & rec.sport.hockey

misc.forsale
rec.autos

rec.motorcycles
rec.sport.baseball
rec.sport.hockey

alt.atheism
soc.religion.christian

talk.religion.misc
talk.politics.mideast
talk.politics.misc 
talk.politics.guns

sci.space
sci.crypt

sci.electronics
sci.med

T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. 
In Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, 1997, pp.143--151.

Twenty News Groups (Joachims 1996)

 Naive Bayes: 89% accuracy of classification
 Highly frequent 100 word (the and of …) are deleted

 The words such as functional words, words relatively useless 
for classification are categorized as stop words and are deleted

 The words occurring less than 3 times are deleted
 The words remained: 38,500 語

Accuracy vs. # of  training data (1/3 is reserved for test)

Note: the accuracy is overly high.. In every 
text in 20 Newsgroups has a "subject" field 
which is very helpful for classification. 
Although the subject field is now deleted, in 
the previous works the field might be utilized.



20 Newsgroups in R

 Naïve Bayes package in R is not appropriate to large 
dataset.
 Because the data matrix with naïve implementation becomes 

huge (in the previous R program, the matrices xy, xy, tt) 
(2000 rows for documents and 40,000 columns for words).

 But non-zero entries are small in number, sparse matrix 
representation is useful.

 You have to pay for computational overhead.
 Then let us write an efficient program by ourselves!?

20 Newsgroups: データ

 In the "20 Newsgroups" site:
 http://people.csail.mit.edu/jrennie/20Newsgroups/
 Redirected to http://qwone.com/~jason/20Newsgroups/

 There is a preprocessed version:
 20news-bydate-matlab.tgz

 We use train.data, train.label, test.data, and 
test.label

 A program is uploaded to the class web page.
 Only the confusion matrix is in the next slide.
 Accuracy is around 78.2%.

> cm
correct

predicted   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20
1  237   3   3   0   0   0   0   1   0   4   2   0   2  10   3   7   2  12   7  47
2    0 299  33   8   8  42   9   1   1   1   0   5  18   7   8   2   0   1   1   3
3    0   7 208  15  10   8   4   0   0   0   0   1   0   1   0   1   0   0   0   0
4    0  12  58 306  38  10  49   2   0   1   0   1  28   3   0   0   0   0   0   0
5    0   7  11  21 275   2  21   0   0   1   0   2   8   0   0   1   1   0   0   0
6    1  21  30   2   3 306   1   1   0   2   0   1   3   0   2   2   0   0   1   0
7    0   1   0   4   4   1 227   5   1   3   1   1   1   1   0   0   2   0   0   0
8    0   3   2   6   4   0  32 356  25   3   1   0   9   3   0   0   2   2   1   0
9    0   1   2   0   1   2   5   4 353   1   0   0   2   0   1   0   1   1   0   1
10   0   0   2   0   1   1   0   2   2 345   4   0   0   2   0   0   1   1   0   0
11   1   0   1   1   0   0   1   0   0  16 381   0   0   0   1   0   0   1   0   0
12   1  16  17   5   5  10   3   1   1   2   1 361  45   0   3   1   3   4   3   1
13   1   4   1  23  16   0  11   4   1   2   0   3 260   3   4   0   0   0   0   0
14   2   3   4   0   7   0   2   0   1   0   2   2   6 324   4   1   1   0   3   3
15   3   6   4   1   2   3   3   2   0   0   1   0   3   3 333   0   2   0   7   5
16  43   4   5   0   0   1   3   0   1   3   2   2   6  16   5 377   3   7   2  69
17   3   0   0   0   3   1   1   5   4   1   0   7   0   3   1   2 324   3  95  19
18   9   0   0   0   0   1   3   1   2   2   1   0   2   6   2   2   2 323   5   5
19   7   2   9   0   6   2   6   9   5   9   3   8   0  10  24   1  16  21 184   8
20  10   0   1   0   0   0   1   1   0   1   0   1   0   1   1   1   4   0   1  90

> 

Bayes inference and NB 

 Overview of the learning algorithm:
 ML: maximize P(D|h) 
 MAP: maximize P(h|D)  P(D|h) P(h)
 Posterior mean: 
 Bayes optimal classifier: P(c|D) =  P(c|h)P(h|D) dh

 Hypotheses distribute!
 Regression under Gaussian noise:

 minimization of mean squared error
 Learning of probability of binary events

 minimization of cross-entropy
 Naive Bayes: rough assumption but practical

 Ex. Document classification
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