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Instance-based Learning

 Concept
 Remember all the training data <xi,f(xi)> (will not consider what 

and how to predict until we need to do so）.
 If we asked, we will do the best at the time

 Technology belonging to this class
 Nearest neighbor
 k-Nearest neighbor
 Locally weighted regression
 Radial basis functions

 Called “Lazy” technique. What is “eager,” then?

Nearest neighbor

 Basic Concept
 For a query xq , find out a nearest point xn, and 

answer with a reply  f(xq) f(xn).
 k-Nearest neighbor

 Find out (not one but) k nearest neighbors, and 
make a reply based on majority of their replies.  

 Average of k nearest neighbors is also used

1-Nearest Neighbor

3-Nearest Neighbor Features
 k-NN is appropriate when

 Feature vector could be seen as a point in Rn

 # of feature is not large (less than a few dozens)
 You have a large amount of data

 K-NN is 
 Fast to learn
 Could represent a complicated target function
 Will not lose information contained in training data

 K-NN is
 Slow to answer (predict)
 Is easily fooled by irrelevant features



Geometrical interpretation
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To draw boundaries
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Voronoi diagram

From Hastie, Tibshirani, Friedman 2001 p418
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Behavior in infinity
 p(x): posterior prob. of x being 1 (positive)
 1-Nearest neighbor:

 when # of samples , asymptotic to Gibbs
 Gibbs predicts 1 with probability p(x)

 k-Nearest neighbor
 # of smpls and k >>1, asymptotic to Bayes opt. 
 Bayes opt. ： Summing up all the votes,

if p(x)>0.5 then 1 else 0.

Note： Expected error of Gibbs is at most twice of 
that of Bays optimal

Gibbs classifier
Given a new instance,
1. Sample a hypothesis randomly according to 

P(h|D) over H 
2. Classify the new instance by the hypothesis

When the expectation is taken over the prior 
distribution P(h) of target concepts,

E[errorBayesOptimal]  E[errorGibbs]  2E[errorBayesOptimal]

(Haussler et al. 1994) or “Mitchell Machine Learning Chap. 6.8”

Useful when there exist many hypotheses and repetitive predictions

Bayes Optimal Classifier
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Note: Bayes-optimal classifier need not to be in the hypothesis space H.

Note: Is it feasible? When feasible, it takes long time to calculate.

Note: Many papers/reviews claim that it works well. But in reality, it is often not 
the case. To clarify conditions when it does is an interesting research topic.

h1 h2 h3

Bayes optimal vs. MAP

Suppose our hypothesis space H has three functions h1, h2 and h3

 P(h1 | D) = 0.4,  P(h2 | D) = 0.3,  P(h3 | D) = 0.3

 What is the MAP hypothesis?

 For a new instance x, suppose h1(x) = +1, h2(x) = -1 and h3(x) = -1

 What is the most probable classification of x?   -1 !

P(+1 | x) = 0.4     P(-1| x) = 0.3 + 0.3

 The most probable classification is not the same as the prediction of 
the MAP hypothesis

Distance-weighted k-NN

 The closer, the heavier

where d(xq,xi) is the distance between xq and xi

 Using this, not only the “k samples” but also 
all the samples could be used ⇒Shepard’s 
method (1968)
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K-NN and irrelevant features
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Problems with distance
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FIGURE10.8. Scalingaxesaffectsthe clustersin a minimum distancecluster method.
The original data and minimum-distance clustersare shown in the upper left; points in
one cluster are shown in red, while the othersare shown in gray. When the vertical axis
is expanded by a factor of 2.0 and the horizontal axis shrunk by a factor of 0.5, the
clustering is altered (asshown at the right). Alternatively, if the vertical axis is shrunk by
a factor of 0.5 and the horizontal axis is expandedby a factor of 2.0, smaller more nu-
merousclustersresult (shown at the bottom). In both thesescaledcases,the assignment
of points to clustersdiffer from that in the original space.From: Richard O. Duda, Peter
E.Hart, and David G. Stork, . Copyright 2001 by John Wiley &
Sons,Inc.
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Structure seen differs 
according to scaling

Curse of dimensionality

 Suppose that we have 20 features but only tow 
of them are meaningful.

 Curse of dimensionality：
 k-NN gives us any conclusion by the 18 features

 A solution:
 Give weight zj to the j-th feature, where zj is chosen 

so that the prediction error is minimal
 cross-validation would determine zj.



Locally weighted regression

 k-NN is understood to locally approximate f around a 
query xq.

 How about explicitly constructing an approximation 
of f(x) around xq ?
 Linear regression to k-NN ?
 Second order regression ?
 Spline?

 There are candidates of errors to be minimized
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Radial Basis Function Network
 Linear combination of local approximators
 A kind of neural networks
 Similar to distance-weighted regression

 Not lazy but eager 
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Learning of RBF

 To Determine xu of Ku(d(xu,x))
 Scatter them uniformly in the sample space
 From training samples

 To Learn weights (supposing Ku is Gaussian)
 Determine sd and mean of Ku.

 E.g. EM
 Fixing Ku, determine linear part

 Linear regression is fast

Lazy vs. eager

 Lazy: does not generalize examples but think it over 
when queried.
 k-Nearest Neighbor

 Eager: does generalize examples before queries
 Learning-type algorithm, ID3, regression, RBF, etc.

 Any difference?
 Eager: in many cases, creates a global approximation
 Lazy: creates a local approximation when needed
 For the same hypothesis space, lazy would create more 

complex hypothesis globally
 Possible over-fitting
 Flexible to combine complex regions and simple regions.

Summary

 Instance-base approach
 Does not assume a global structure

 Admits any structure
 Susceptible to noise (could not utilize global 

information to smooth it locally)
 Curse of dimensionality


