Topics in ML
or
Introduction to
Machine Learning

Akito Sakurai
Professor, YNU
Professor Emeritus, Keio University

Course information

* Course Name: Topics in Machine Learning

* Code: WATO118

* Instructor: Prof. Akito Sakurai

* Time: Thursday, 3rd Lecture (13:00-14:30)

* Location: General Research Building, S9-1, Room E205
* TA: Dr. Mehboob Rasul

* Please note: For this class please bring your laptops.

* Class notes: pdf files will be posted somewhere.

* Prerequisites:
* Basic (some) understandings of statistics/probability
« Some experience of any computer languages

Class overview

+ Class Schedule no. _|date topic

1| 2019/10/10|introduction

2019/10/17no class

2019/10/24|nearest neighbor

2019/10/31|decision tree and overfitting
2019/11/7|naive bayes and baysian method

2019/11/14|model selection

2019/11/21|support vector machine

2019/11/28|boosting
2019/12/5|k-means and em

2019/12/12|(buffer)

2019/12/19|neural networks and bp

1| 2020/1/9|deep learning: conv net

2020/1/16[autoencoder and GAN

3| 2020/1/23|visualization and grad cam

4] 2020/1/30[word embedding

© N s w N

e e
~> o

=

Organization of this lecture

* The lecture includes two sets of topics
« First half: Machine learning (other than deep learning)
* Second half: Deep learning

* Machine learning
« Basic concepts
* Generalization / Model complexity
* Methods
* Decision tree / Nearest neighbor / Support vector machine / Boosting
* Deep learning
« Basic concepts
* Neural network / backpropagation
* Methods

+ Convolutional .

Exercise Environment

* In the lecture, Google Colaboratory will be used.
* You are requested to have a Google account.
* You do not need to prepare e.g. Ubuntu and GPU environments
« Itis free of charge.

* The language to be used is R (not Python).
* See the next slide.
* To use the language R, you need a couple of techniques.

* Google Colaboratory is a good choice when you do not have a PC
with GPU. If you do have, it would be nice to set up R/RStudio and
Anaconda environment by yourself.

Sign in to your
Google account

Then connect to

hosted runtime
Welcome to Colaboratory!

g ety

Then read and try the
programs

Intro to
Google Colab
@&

® Coing Temsort \ﬂ |

Run a Python program in the notebook by ctrl+enter

Select, e.g., New Python 3 notebook or shiftsenter

Weicome to Colsboratory! ~

A way to use R with Google Colaboratory

1. Create a notebook "kernelspec": {
2. Download it by "name": "python3",
File » Download .ipynb, "display_name": "Python 3"
3. Rewrite two lines it as: }
4. Upload it by "kernelspec": {
File - Upload notebook " b "name": "ir",
5. Or just upload R.ipynb "display_name": "R"
}

https://stackoverflow.com/questions/54595285/how-to-use-r-with-google-colaboratory

Atest:
Install a package “keras” L
and use it.

Another way

You insert %load_ext rpy2.ipython in the
first cell; and then

insert %%R at the first line of each cell.
(cells without %%R are Python cells)

Note: For unknown reason,
dataset_mnist() crashes kernel after
successful installation of package keras.
(memory problem?)

Other methods to use R

* Install R itself.
* You could install native R on Windows, Mac, and Unix.
* The R Project for Statistical Computing https://www.r-project.org/

* Install R with some development environment
* RStudio https://www.rstudio.com/products/rstudio/download/

* Anaconda The World's Most Popular Data Science Platform
https://www.anaconda.com/

Text books and/or resource

* No textbooks

* References
* Machine Learning with R
https://github.com/SharmaNatasha/Books/blob/master/Machine%20Learnin
2%20with%20R%2C%20Second%20Edition.pdf

* Introduction to Statistical Learning with Applications in R
http://faculty.marshall.usc.edu/gareth-james/

* Frangois Chollet with J. J. Allaire, Deep Learning with R
* “Notebooks” in the next slide.

Deep learning examples

* Codes in “Deep Learning with R”
https://github.com/jjallaire/deep-learning-with-r-notebooks
are converted to Google Colaboratory Jupyter notebook
format.

* You may upload and test them.

* Note:
+ Some of them were erroneous. They were corrected by comparing
with “Deep Learning with Python” and accompanying notebooks.
» Some of them crash Google Colaboratory’s R kernel because of
memory limitation.

€ C @ hitps/icolabresearch google com/drive/ 12d2oi PENLUILAL %% @O0
& Ripph B commen 2% Shae R . . .
M i Wil i : o What is machine learning?
™ 4 v | ey A
! = * ML is methodology to make machines (computers) become
smarter by itself.
* Arthur Samuel (1959):
... a computer can be programmed so that it will learn to
play a better game of checkers than can be played by the
person who wrote the program.
ps * CEN Programming computers to learn from experience should
eventually eliminate the need for much of this detailed
programming effort.
(the following famous quote is not verified:
ML: Field of study that gives computers the ability to learn
. without being explicitly programmed.) .
Al ML, and DL
No. 1

Deep Learning

Machine Learning

Artificial Intelligence

.oracle. i if i hine-

learning-deep-learning

latest-trend-in-ai-and-ml/

Al ML, and DL (DNN)

Artificial

Intelligence Machine
Learning

No. 2-1

1970s

Checker program

Neural
Network

Al ML, and DL (DNN)
No. 2-2

Around 1995

Winter of Al

Rise of NN
Learning
Overlap with
statistics/probability

Network

Al ML, and DL (DNN)

No. 2-3

Artificial Intellige

Deep
Neural
Network

Note: Al too, has
become larger

From information viewpoint
Al, ML, and DL (DNN)

Artificial Intellige

Symbolic
Information

Numeric Network
nformation processi

(Parallel Distributed Processing)

Symbolic Al vs. Numerical Al, or Al vs. NN

E
I Around 20

PDP 1986

00
ALPAC report 1966 Fifth gen. computer ~ontology Hinton 2010
the Lighthill report 1973 1982-1992 Deep Neural Net.
1970 1980 1990 2000 2010
Al: Spring ., . > > T 2
and Winter 1970s early Around 1990
to 80s
- > re——>

NN: Spring <« «
and Winter 1970s early 2000s late
to 85

M

Positioning of ML

Artificial Intelligence

Tmg. M
Proc M Tran.

Artificial Intelligence

I Img. Macl
Retr.. Proc Tran.

Machine Learning

Long time ago

Framework of ML

To write a learning program strong in Go,

Rule-based (symbolic/discrete) : Non-symbolic (continuous value) :

A programmer should collect Go scores
as many as possible, without need of
knowing much of Go.

that he/she could understand and

A programmer should study Go so deeplyl
distinguish good and bad moves.

Write programs to play, or collect Go
scores as many as possible and learn
them by symbolic le .

Framework of ML (cont.)

* Supervised learning
* Given: Labeled data (pairs of input and output value (label))
* Gives: estimated output for (possibly unseen) input
* Problems: regression, classification, identification

(4,2),(#,4),.. == (4,),

* Unsupervised learning
« Given: Unlabeled data (i.e., only “input”)
* Gives: Clustering, outlier detection

* Semi-supervised learning
« Given: unlabeled and labeled data (the latter is in smaller number)
« Gives: as supervised learning

* Reinforcement learning
* Given: not given. Data should be collected by oneself
* Gives: A best policy to reach a goal

Overview of a whole setup

Frameworks

Supervised learning: Training data are labeled
A program to calculate Learning program. Find a Unsupervised learning: ?K o
output (the next move) best explanation of the expd:r::,rme Y ¢> 74)
by the model data Semi-supervised learning. L I
L 5 &
s 7 2 1 0
Reinforcement learning: ‘ 7 Z- f' O
. 4 1 4 9
Output (the next ?::e:tpliﬁz)e Other learning framework: q ! 0 L(O ‘\6
move) o representation learning: 4‘5 ? 0 o
— Controller: invisible — correlation learning etc. 9 0 1 5
Frameworks = Frameworks :

Divide into clusters with «
similar properties

Supervised learning:
Unsupervised learning:
Semi-supervised learning:
Reinforcement learning:
Other learning framework:

representation learning:
correlation learning etc.

Supervised learning:
Unsupervised learning:

Semi-supervised learning.

Reinforcement learning:

Other learning framework: There could be labeled data
representation learning: f o
correlation learning etc. 0\9

Y o 7700
== l1 77 ’{9

/ 5% 2

Frameworks

Reinforcement learning

Reinforcement: any stimulus applied that will strengthen
an organism's future behavior whenever that behavior is
Unsupervised learning: preceded by a specific antecedent stimulus

Supervised learning:

Semi-supervised learning:
Reinforcement could be delayed (delay is quite

common). Reinforcement given long after its
cause is, too, considered. It could happen that
the reword obtained long after the time of
cause.

This means that actions that resulted in good
reward is not necessarily correct.

Reinforcement learning:

Other learning framework:
representation learning:
correlation learning etc.

Feature extraction

* To treat images, we need to form a vector form them. The
resulted vector or its element is called feature vector or a
feature.

A feature vector

Feature extraction | *1
X2
Xd

* Functions the map images to those feature vector vary from
field of study to others.

+ Deep learning often construct the feature function in its
learning phase.

Formulation of ML problems with loss function.

« Supervised/Unsupervised learning is formulated as to
minimize loss incurred by using the learned model.

« If a parameter 6 € O is to identify the model (hypothesis), ®
corresponds to a hypothesis space where we search for it; and the
learning is to find a good approximation to the true one: 6 ~ 6 .

« Aloss function measures badness of explaining occurrence of data z
by 0 : £(z;).

+ We need to evaluate 8 so that we want to eliminate z from £.

+ We consider two types of loss incurred by 8.
« Generalization error (expected error): expected loss over all possible
data sampled from the population, i.e., Lg(B) = ff(Z; H)p(Z)dZ.
- Empirical error (training error):L,(6) = (1/n) Tit, #(z; 0)

Generalization error vs. empirical error

» Minimization of generalization error is the goal of learning.
But it is impossible because the population is not known.

* What we could do most is to use empirical error.
But it is in general under-estimation and over-training/over-
learning occurs:
36010, Lg(01) < Lg(62) A Lo(61) > L.(6;)

« To circumvent it, we use information criteria, cross-
validation, regularization, and so forth.

Ex. Loss function for regression

For asample z = (x,y) and f = A.xf
*Square loss: #(z; 6) = (1/2)(y — f(x))2
* Absolute loss: #(z; 6) = |y — f(x) |
* T-Quantile loss:
2(z;) = (1 — 1) max(f(x) — y,0) + tmax(y — f(x),0)

* e-incensitive loss:
2(z;) = max(|f(x) —y| —¢€|,0)

Ex. Loss function (classification)

*Fory € {+1.—-1}

« Logistic loss: £(z; 8) = log((1 + exp(—yf(x)/2).
* Hinge loss: #(z; 8) = max{ 1 — yf(x),0}.

* Exponential loss: £(z; 8) = exp(—yf (x)).

Over-training/over-learning

36,0, Lg(6:) < Lg(8;) A Lo(8,) > L,(8,) Hypothesis space:
a set of polynomials up to fifth degree

library(nls2) Loss function: Square loss
Sez'siegélﬁ") Parameters: degree, coefficients
X < 1:

y <= x+rnorm(20,sd=3)

plot(x,y)

Xy <- data.frame(x=x,y=y)
res5 <- nls(y ~ a + b *x + ¢*x"2 + d *x"3 + e *x" + f*x"5, data=xy,
start=list(a=1,b=1,c=0.5,d=0.1,e=0.05,f=0.001))
curve((x),col=4,add=T) # blue
lines(x,predict(res5),col=2) # red

resl <- nis(y ~ a + b *x , data=xy,

start=list(a=1,b=1)) <

lines(x, predict(resl),col=3) # green

Errors/residuals -
> # in-sample/empirical error o]

> mean((y-predict(res5))~2)
[1] 5-808777

> mean((y-predict(resl))"2) ©
[1] 8454419

> # generalization error

> mean((x-predict(res5))"2)
[1] 3.544463

> mean((x-predict(resl))"2) T T T T
[1] 0-8988136 5 10 15 20

Linear Regression

* Suppose that
y = Bo + ixy + Boxy + -+ + Baxq + € where e~N(0,02)

* Simple linear regression
y = Bo + f1x; + € where e~N(0,02)

* Multiple linear regression
y = Bo + Pixy + foxy + -+ + Baxq + € where e~N(0,02)
whered > 2

Ordinary Least Squares

* Suppose: observed samples are (x;,y;) € RY X R

1 x] Y1 €1
X=|: :|eR™U@) y=|ileRMe=]|!| €R"
1 Xl In €n

* Suppose also that B* is the true coefficients, i.e.,
y=Xp"+te

* Then OLS estimator is:

Simple Examples of Linear Regression

* Simple Regression 1

* Upload empty_R.ipynb to Google MyDrive and open it with CoLab
+ Copy & paste: install.packages('nls2')

* Copy & paste the following and run them all.

library(nls2)

set.seed(1234)

x <= 1:20

y <= x+rnorm(20,sd=3)

plot(x,y)

xy <- data.frame(x=x,y=y

ress <- nIs(y ~ @ + b *x + c*xA2 + d *x~3 + e *x’4 + £*x5, data=xy,
start=list(a=1,b=1,c=0.5,d=0.1,e=0.05,f=0.001))

curve((x),col=4,add=T) # blue

lines(x,predict(res5),col=2) #

resl <- nls(y ~ a + b *x , data=xy, start=list(a=1,b=1))

lines(x,predict(resl),col=3) green

* Simple Regression 2

* Do the same to: O1LinearRegression.R.ipynb
« Explanation is in

https://predictivemodeler.com/2019/02/23/r-basic-regression/

§ o= S -¥lp)
= ar,gz,mﬁinlly—Xﬁ'll2
= (xTX)7'XTy
Summary
* Lecture

* Basics of machine learning and deep learning
* Exercise environment: Colab and others
« Language: R and others
* Introduction to ML
* Positioning of ML in Al
* Symbolic Al and Numerical AI (not popular)
« Supervised/unsupervised/semi-supervised/reinforcement

* Schedule
* No class on Oct 17

